Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols

Author:

Fast J.,Aiken A. C.,Allan J.,Alexander L.,Campos T.,Canagaratna M. R.,Chapman E.,DeCarlo P. F.,de Foy B.,Gaffney J.,de Gouw J.,Doran J. C.,Emmons L.,Hodzic A.,Herndon S. C.,Huey G.,Jayne J. T.,Jimenez J. L.,Kleinman L.,Kuster W.,Marley N.,Russell L.,Ochoa C.,Onasch T. B.,Pekour M.,Song C.,Ulbrich I. M.,Warneke C.,Welsh-Bon D.,Wiedinmyer C.,Worsnop D. R.,Yu X.-Y.,Zaveri R.

Abstract

Abstract. Simulated primary organic aerosols (POA), as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaigns. Since the emission inventories, transport, and turbulent mixing will directly affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA) treatments. Carbon monoxide (CO) is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC) in the city was similar, but larger errors occurred at remote locations since the overall CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization of data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Modeled POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when modeled POA was compared with the sum of "primary anthropogenic" and "biomass burning" components derived from Positive Matrix Factorization (PMF) on most days, especially at the surface sites, suggesting that the overall magnitude of primary organic particulates released was reasonable. However, simulated POA from anthropogenic sources was often lower than "primary anthropogenic" components derived from PMF, consistent with two recent reports that these emissions are underestimated. The modeled POA was greater than the total observed organic matter when the aircraft flew directly downwind of large fires, suggesting that biomass burning emission estimates from some large fires may be too high.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference76 articles.

1. Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: Development and first applications, Atmos. Environ., 32, 2981–2999, 1998.

2. Aiken, A. C., Salcedo, D., Cubison, M. J., de Foy, B., Wiedinmyer, Huffman, C. J., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Wehrli, M. N., Szidat, S., Prevot, A., Baltensperger, U., Noda, J., Wacker, L., Stone, E. A., Schauer, J. J., Volkamer, R., Fortner, E., Knighton, B., Wang, J., Laskin, A., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Querol, X., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment, Atmos. Chem. Phys. Discuss., 9, 8377–8427, 2009.

3. Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Zhang, Q., Sun, Y., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, R., Prevot, A. S. H. Dommen, J. Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.

4. Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., and Moreno, T.: Spatial and chemical patterns of PM10 in road dust deposited in urban environment, Atmos. Environ. 43, 1650–1659, 2009.

5. Baumgarder, D., Grutter, M., Allan, J., Ochoa, C., Rappenglueck, B., Russell, L. M, and Arnott, P: Evolution of anthropogenic pollution at the top of the regional mixed layer over the central Mexico plateau, Atmos. Chem. Phys., 3265–3306, 2009.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3