Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone

Author:

Liu Zixia,Osborne Martin,Anderson Karen,Shutler Jamie D.,Wilson Andy,Langridge Justin,Yim Steve H. L.ORCID,Coe Hugh,Babu Suresh,Satheesh Sreedharan K.,Zuidema PaquitaORCID,Huang TaoORCID,Cheng Jack C. H.,Haywood James

Abstract

Abstract. We first validate the performance of the Portable Optical Particle Spectrometer (POPS), a small light-weight and high sensitivity optical particle counter, against a reference scanning mobility particle sizer (SMPS) for a month-long deployment in an environment dominated by biomass burning aerosols. Subsequently, we examine any biases introduced by operating the POPS on a quadcopter drone, a DJI Matrice 200 V2. We report the root mean square difference (RMSD) and mean absolute difference (MAD) in particle number concentrations (PNCs) when mounted on the UAV and operating on the ground and when hovering at 10 m. When wind speeds are low (less than 2.6 m s−1), we find only modest differences in the RMSDs and MADs of 5 % and 3 % when operating at 10 m altitude. When wind speeds are between 2.6 and 7.7 m s−1 the RMSDs and MADs increase to 26.2 % and 19.1 %, respectively, when operating at 10 m altitude. No statistical difference in PNCs was detected when operating on the UAV in either ascent or descent. We also find size distributions of aerosols in the accumulation mode (defined by diameter, d, where 0.1 ≤ d ≤ 1 µm) are relatively consistent between measurements at the surface and measurements at 10 m altitude, while differences in the coarse mode (here defined by d >  1 µm) are universally larger. Our results suggest that the impact of the UAV rotors on the POPS PNCs are small at low wind speeds, but when operating under a higher wind speed of up to 7.6 m s−1, larger discrepancies occur. In addition, it appears that the POPS measures sub-micron aerosol particles more accurately than super-micron aerosol particles when airborne on the UAV. These measurements lay the foundations for determining the magnitude of potential errors that might be introduced into measured aerosol particle size distributions and concentrations owing to the turbulence created by the rotors on the UAV.

Funder

Chinese University of Hong Kong

University of Exeter

Natural Environment Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3