New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise

Author:

Jordan Carolyn E.ORCID,Stauffer Ryan M.ORCID,Lamb Brian T.ORCID,Hudgins Charles H.,Thornhill Kenneth L.,Schuster Gregory L.,Moore Richard H.ORCID,Crosbie Ewan C.,Winstead Edward L.,Anderson Bruce E.,Martin Robert F.,Shook Michael A.,Ziemba Luke D.,Beyersdorf Andreas J.ORCID,Robinson Claire E.,Corr Chelsea A.,Tzortziou Maria A.

Abstract

Abstract. In situ observations of spectrally resolved aerosol extinction coefficients (300–700 nm at ∼ 0.8 nm resolution) from the May–June 2016 Korea–United States Ocean Color (KORUS-OC) oceanographic field campaign are reported. Measurements were made with the custom-built Spectral Aerosol Extinction (SpEx) instrument that previously has been characterized only using laboratory-generated aerosols of known size and composition. Here, the performance of SpEx under realistic operating conditions in the field was assessed by comparison to extinction coefficients derived from commercial instruments that measured scattering and filter-based absorption coefficients at three discrete visible wavelengths. Good agreement was found between these two sets of extinction coefficients with slopes near unity for all three wavelengths within the SpEx measurement error (± 5 Mm−1). The meteorological conditions encountered during the cruise fostered diverse ambient aerosol populations with varying sizes and composition at concentrations spanning 2 orders of magnitude. The sampling inlet had a 50 % size cut of 1.3 µm diameter particles such that the in situ aerosol sampling suite deployed aboard ship measured fine-mode aerosols only. The extensive hyperspectral extinction data set acquired revealed that nearly all measured spectra exhibited curvature in logarithmic space, such that Ångström exponent (α) power law fits could lead to large errors compared to measured values. This problem was particularly acute for α values calculated over only visible wavelengths and then extrapolated to the UV, highlighting the need for measurements in this wavelength range. Second-order polynomial fits to the logarithmically transformed data provided a much better fit to the measured spectra than the linear fits of power laws. Building on previous studies that used total column aerosol optical depth observations to examine the information content of spectral curvature, the relationship between α and the second-order polynomial fit coefficients (a1 and a2) was found to depend on the wavelength range of the spectral measurement such that any given α maps into a line in (a1, a2) coefficient space with a slope of −2LN(λch), where λch is defined as the single wavelength that characterizes the wavelength range of the measured spectrum (i.e., the “characteristic wavelength”). Since the curvature coefficient values depend on λch, it must be taken into account when comparing values from spectra obtained from measurement techniques with different λch. Previously published work has shown that different bimodal size distributions of aerosols can exhibit the same α yet have differing spectral curvature with different (a1, a2). This implies that (a1, a2) contain more information about size distributions than α alone. Aerosol size distributions were not measured during KORUS-OC, and the data reported here were limited to the fine fraction, but the (a1, a2) maps obtained from the SpEx data set are consistent with the expectation that (a1, a2) may contain more information than α – a result that will be explored further with future SpEx and size distribution data sets.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference50 articles.

1. Al-Saadi, J., Carmichael, G., Crawford, J., Emmons, L., Kim, S., Song, C.-K., Chang, L.-S., Lee, G., Kim, J., and Park, R.: NASA Contributions to KORUS-AQ: An International Cooperative Air Quality Field Study in Korea, 32 pp., available at: https://espo.nasa.gov/home/korus-aq/content/KORUS-AQ_Science_Overview_0, last access: 4 November 2015.

2. Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Technol., 29, 57–69, https://doi.org/10.1080/02786829808965551, 1998.

3. Ångström, A.: On the atmospheric transmission of sun radiation and on dust in the air (1929), in: Selected papers on scattering in the atmosphere, SPIE Milestone Series, vol. 11, edited by: Bohren, C., SPIE, 156–166, 1989.

4. Bluvshtein, N., Flores, J. M., Segev, L., and Rudich, Y.: A new approach for retrieving the UV–vis optical properties of ambient aerosols, Atmos. Meas. Tech., 9, 3477–3490, https://doi.org/10.5194/amt-9-3477-2016, 2016.

5. Bluvshtein, N., Lin, P., Flores, J. M., Segev, L., Mazar, Y., Tas, E., Snider, G., Weagle, C., Brown, S. S., Laskin, A., and Rudich, Y.: Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores, J. Geophys. Res.-Atmos., 122, 5441–5456, https://doi.org/10.1002/2016JD026230, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3