Physiological response of a golden tide alga (<i>Sargassum muticum</i>) to the interaction of ocean acidification and phosphorus enrichment

Author:

Xu Zhiguang,Gao Guang,Xu Juntian,Wu Hongyan

Abstract

Abstract. The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO2 (400 and 1000 µatm) and phosphate (0.5 and 40 µM) to investigate the interactive effects of elevated pCO2 and phosphate on the physiological properties of the thalli. Higher pCO2 and phosphate (P) levels alone increased the relative growth rate by 41 and 48 %, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO2 and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO2 and P worked together. The higher pCO2 and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32 % compared to the condition of lower pCO2 and lower P. The neutral effect of the higher levels of pCO2 and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO2 and higher P; this is most likely to act against the higher pCO2 that caused acid–base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3