Benefits and challenges of dynamic sea ice for weather forecasts

Author:

Day Jonathan J.,Keeley SarahORCID,Arduini Gabriele,Magnusson LinusORCID,Mogensen Kristian,Rodwell Mark,Sandu Irina,Tietsche SteffenORCID

Abstract

Abstract. The drive to develop environmental prediction systems that are seamless across both weather and climate timescales has culminated in the development and use of Earth system models, which include a coupled representation of the atmosphere, land, ocean and sea ice, for medium-range weather forecasts. One region where such a coupled Earth system approach has the potential to significantly influence the skill of weather forecasts is in the polar and sub-polar seas, where fluxes of heat, moisture and momentum are strongly influenced by the position of the sea ice edge. In this study we demonstrate that using a dynamically coupled ocean and sea ice model in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System results in improved sea ice edge position forecasts in the Northern Hemisphere in the medium range. Further, this improves forecasts of boundary layer temperature and humidity downstream of the sea ice edge in some regions during periods of rapid change in the sea ice, compared to forecasts in which the sea surface temperature anomalies and sea ice concentration do not evolve throughout the forecasts. However, challenges remain, such as large errors in the position of the ice edge in the ocean analysis used to initialise the ocean component of the coupled system, which has an error of approximately 50 % of the total forecast error at day 9, suggesting there is much skill to be gained by improving the ocean analysis at and around the sea ice edge. The importance of the choice of sea ice analysis for verification is also highlighted, with a call for more guidance on the suitability of satellite sea ice products to verify forecasts on daily to weekly timescales and on meso-scales (< 500 km).

Funder

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3