Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions
-
Published:2016-02-25
Issue:4
Volume:16
Page:2207-2219
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Sioris Christopher E., Zou Jason, McElroy C. ThomasORCID, Boone Chris D., Sheese Patrick E., Bernath Peter F.
Abstract
Abstract. The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellite-based remote sensing mission are chosen. The Puyehue–Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12) % increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of ∼ 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by wind-blown plumes. The Puyehue–Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M.,
Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R.,
DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J.,
Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe,
R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R.,
Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P.,
Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J.
J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A.,
Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric
Chemistry Experiment (ACE): mission overview, Geophys. Res. Lett., 32,
L15S01, https://doi.org/10.1029/2005GL022386, 2005. 2. Bernstein, L. S., Berk, A., Acharya, P. K., Robertson, D. C., Anderson, G.
P., Chetwynd, J. H., and Kimball, L. M.: Very narrow band model calculations
of atmospheric fluxes and cooling rates, J. Atmos. Sci., 53, 2887–2904,
1996. 3. Bertrand, S., Daga, R., Bedert, R., and Fontijn, K.: Deposition of the
2011–2012 Cordón Caulle tephra (Chile, 40° S) in lake
sediments: Implications for tephrochronology and volcanology, J. Geophys.
Res.-Earth, 119, 2555–2573, https://doi.org/10.1002/2014JF003321, 2014. 4. Bonadonna, C., Pistolesi, M., Cioni, R., Degruyter, W., Elissondo, M., and
Baumann, V.: Dynamics of wind-affected volcanic plumes: The example of the
2011 Cordón Caulle eruption, Chile, J. Geophys. Res.-Sol. Ea., 120,
2242–2261, https://doi.org/10.1002/2014JB011478, 2015. 5. Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D.,
Rinsland, C. P., and Bernath, P. F.: Retrievals for the atmospheric
chemistry experiment Fourier-transform spectrometer, Appl. Opt., 44,
7218–7231, 2005.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|