Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

Author:

Qian Y.,Flanner M. G.,Leung L. R.,Wang W.

Abstract

Abstract. The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5–25 W m−2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO2 increase during April–July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring aerosols are transported by southwesterly, causing some particles to reach higher altitude and deposit to the snowpack over the TP. While BC and Organic Matter (OM) in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above through sensible heat flux. Both effects enhance the upward motion of air and spur deep convection along the TP during the pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier – a near-zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. The snow impurity effects reported in this study likely represent some upper limits as snowpack is remarkably overestimated over the TP due to excessive precipitation. Improving the simulation of precipitation and snowpack will be important for improved estimates of the effects of snowpack pollution in future work.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 281 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3