The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty

Author:

Urbanski S. P.,Hao W. M.,Nordgren B.

Abstract

Abstract. Biomass burning emission inventories serve as critical input for atmospheric chemical transport models that are used to understand the role of biomass fires in the chemical composition of the atmosphere, air quality, and the climate system. Significant progress has been achieved in the development of regional and global biomass burning emission inventories over the past decade using satellite remote sensing technology for fire detection and burned area mapping. However, agreement among biomass burning emission inventories is frequently poor. Furthermore, the uncertainties of the emission estimates are typically not well characterized, particularly at the spatio-temporal scales pertinent to regional air quality modeling. We present the Wildland Fire Emission Inventory (WFEI), a high resolution model for non-agricultural open biomass burning (hereafter referred to as wildland fires, WF) in the contiguous United States (CONUS). The model combines observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua satellites, meteorological analyses, fuel loading maps, an emission factor database, and fuel condition and fuel consumption models to estimate emissions from WF. WFEI was used to estimate emissions of CO (ECO) and PM2.5 (EPM2.5) for the western United States from 2003–2008. The uncertainties in the inventory estimates of ECO and EPM2.5 (uECO and uEPM2.5, respectively) have been explored across spatial and temporal scales relevant to regional and global modeling applications. In order to evaluate the uncertainty in our emission estimates across multiple scales we used a figure of merit, the half mass uncertainty, ũEX (where X = CO or PM2.5), defined such that for a given aggregation level 50% of total emissions occurred from elements with uEX ũEX. The sensitivity of the WFEI estimates of ECO and EPM2.5 to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors have also been examined. The estimated annual, domain wide ECO ranged from 436 Gg yr−1 in 2004 to 3107 Gg yr−1 in 2007. The extremes in estimated annual, domain wide EPM2.5 were 65 Gg yr−1 in 2004 and 454 Gg yr−1 in 2007. Annual WF emissions were a significant share of total emissions from non-WF sources (agriculture, dust, non-WF fire, fuel combustion, industrial processes, transportation, solvent, and miscellaneous) in the western United States as estimated in a national emission inventory. In the peak fire year of 2007, WF emissions were ~20% of total (WF + non-WF) CO emissions and ~39% of total PM2.5 emissions. During the months with the greatest fire activity, WF accounted for the majority of total CO and PM2.5 emitted across the study region. Uncertainties in annual, domain wide emissions was 28% to 51% for CO and 40% to 65% for PM2.5. Sensitivity of ũECO and ũEPM2.5 to the emission model components depended on scale. At scales relevant to regional modeling applications (Δx = 10 km, Δt = 1 day) WFEI estimates 50% of total ECO with an uncertainty <133% and half of total EPM2.5 with an uncertainty <146%. ũECO and ũEPM2.5 are reduced by more than half at the scale of global modeling applications (Δ x = 100 km, Δ t = 30 day) where 50% of total emissions are estimated with an uncertainty <50% for CO and <64% for PM2.5. Uncertainties in the estimates of burned area drives the emission uncertainties at regional scales. At global scales ũECO is most sensitive to uncertainties in the fuel load consumed while the uncertainty in the emission factor for PM2.5 plays the dominant role in ũEPM2.5. Our analysis indicates that the large scale aggregate uncertainties (e.g. the uncertainty in annual CO emitted for CONUS) typically reported for biomass burning emission inventories may not be appropriate for evaluating and interpreting results of regional scale modeling applications that employ the emission estimates. When feasible, biomass burning emission inventories should be evaluated and reported across the scales for which they are intended to be used.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3