Chemical characteristics of inorganic ammonium salts in PM<sub>2.5</sub> in the atmosphere of Beijing (China)

Author:

Ianniello A.,Spataro F.,Esposito G.,Allegrini I.,Hu M.,Zhu T.

Abstract

Abstract. The atmospheric concentrations of gaseous HNO3, HCl and NH3 and their relative salts have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China), as part of CAREBEIJING (Campaigns of Air Quality Research in Beijing and Surrounding Region). In this study, annular denuder technique used with integration times of 2 and 24h to collect inorganic and soluble PM2.5 without interferences from gas–particle and particle–particle interactions. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. Fine particulate Cl−, NH4+ and SO42− exhibited distinct temporal variations, while fine particulate NO3− did not show much variation with respect to season. Daily mean concentrations of fine particulate NH4+ and SO42− were higher during summer (12.30 μg m−3 and 18.24 μg m−3, respectively) than during winter (6.51 μg m−3 and 7.50 μg m−3, respectively). Daily mean concentrations of fine particulate Cl− were higher during winter (2.94 μg m−3) than during summer (0.79 μg m−3), while fine particulate NO3− showed similar both in winter (8.38 μg m−3) and in summer (9.62 μg m−3) periods. The presence of large amounts of fine particulate NO3− even in summer are due to higher local and regional concentrations of NH3 in the atmosphere available to neutralize H2SO4 and HNO3, which is consistent with the observation that the measured particulate species were neutralized. The composition of fine particulate matter indicated the domination of (NH4)2SO4 during winter and summer periods. In addition, the high relative humidity conditions in summer period seemed to dissolve a significant fraction of HNO3 and NH3 enhancing fine particulate NO3− and NH4+ in the atmosphere. All measured particulate species showed diurnal similar patterns during the winter and summer periods with higher peaks in the early morning, especially in summer, when humid and stable atmospheric conditions occurred. These diurnal variations were affected by wind direction suggesting regional and local source influences. The fine particulate species were correlated with NOx and PM2.5, supporting the hypothesis that traffic may be also an important source of secondary particles.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3