Easy to build low-power GPS drifters with local storage and a cellular modem made from off-the-shelf components

Author:

Hut RolfORCID,Thatoe Nwe Win Thanda,Bogaard Thom

Abstract

Abstract. Drifters that track their position are important tools in studying the hydrodynamic behavior of rivers. Drifters that can be tracked in real time have so far been rather expensive. Recently, due to the rise of the open-hardware revolution and the associated Arduino ecosystem, both GPS receivers and cellular modems have become available at lower prices to “tinkering scientists”, i.e., scientists that like to build their own measurement devices as much as is possible. This article serves two goals. Firstly, we provide detailed instructions on how to build a low-power GPS drifter with local storage and cellular model that we tested in a fieldwork on the confluence of the Chindwin and Ayeyarwady rivers in Myanmar. The device was designed from easily connected off-the-shelf components, allowing construction without a background in electrical engineering. The instructions allow fellow geoscientists to recreate the device. Secondly, we set the following question: has the open-hardware revolution progressed to the point that a low-power GPS drifter that wirelessly transmits its position can be made from open-hardware components by most geoscientists?. We feel this question is relevant and timely as more low-cost open-hardware devices are promoted, but in practice applicability is often restricted to the “tinkering engineer”. We argue that because of the plug-and-play nature of the components geoscientists should be able to construct these type of devices. However, to get such devices to operate at low power levels that fieldwork often demands requires detailed (micro)electrical expertise.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Reference26 articles.

1. Arduino: Arduino – Home, available at: https://www.arduino.cc/ (last access: 8 September 2020), 2018. a

2. Austin, J. and Atkinson, S.: The Design and Testing of Small, Low-Cost GPS-Tracked Surface Drifters, Estuaries, 27, 1026–1029, https://doi.org/10.1007/BF02803428, 2004. a

3. Bakker, T.: Dispersion in the Ayeyarwady: A Description of the Mixing of Tracers in the Area of the Ayeyarwady River–Chindwin River Confluence, available at: http://resolver.tudelft.nl/uuid:07a91b3a-7068-48fd-a74f-1f7906602832 (last access: 2 November 2020), 2017. a, b, c

4. Banzi, M. and Shiloh, M.: Getting Started with Arduino: The Open Source Electronics Prototyping Platform, Maker Media, Inc., Make Community, LLC, ISBN-13: 978-1449363338, 2014. a

5. Cadena, A., Vera, S., and Moreira, M.: A Low-Cost Lagrangian Drifter Based on Open-Source Hardware and Software Platform, in: 2018 4th International Conference on Control, Automation and Robotics (ICCAR), 218–221, https://doi.org/10.1109/ICCAR.2018.8384673, 2018. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3