Two decades of flask observations of atmospheric <i>δ</i>(O<sub>2</sub>∕N<sub>2</sub>), CO<sub>2</sub>, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland), and 3 years from Halley station (Antarctica)

Author:

Nguyen Linh N. T.ORCID,Meijer Harro A. J.,van Leeuwen Charlotte,Kers Bert A. M.,Scheeren Hubertus A.,Jones Anna E.ORCID,Brough Neil,Barningham Thomas,Pickers Penelope A.,Manning Andrew C.ORCID,Luijkx Ingrid T.ORCID

Abstract

Abstract. We present 20-year flask sample records of atmospheric CO2, δ(O2/N2), and atmospheric potential oxygen (APO) from the stations Lutjewad (the Netherlands) and Mace Head (Ireland), and a 3-year record from Halley station (Antarctica). We include details of our calibration procedures and the stability of our calibration scale over time, which we estimate to be 3 per meg over the 11 years of calibration, and our compatibility with the international Scripps O2 scale. The measurement records from Lutjewad and Mace Head show similar long-term trends during the period 2002–2018 of 2.31 ± 0.07 ppm yr−1 for CO2 and −21.2 ± 0.8 per meg yr−1 for δ(O2/N2) at Lutjewad, and 2.22 ± 0.04 ppm yr−1 for CO2 and −21.3 ± 0.9 per meg yr−1 for δ(O2/N2) at Mace Head. They also show a similar δ(O2/N2) seasonal cycle with an amplitude of 54 ± 4 per meg at Lutjewad and 61 ± 5 per meg at Mace Head, while the CO2 seasonal amplitude at Lutjewad (16.8 ± 0.5 ppm) is slightly higher than that at Mace Head (14.8 ± 0.3 ppm). We show that the observed long-term trends and seasonal cycles are in good agreement with the measurements from various other stations, especially the measurements from the Weybourne Atmospheric Observatory (United Kingdom). However, there are remarkable differences in the progression of annual trends between the Mace Head and Lutjewad records for δ(O2/N2) and APO, which might in part be caused by sampling differences, but also by environmental effects, such as North Atlantic Ocean oxygen ventilation changes to which Mace Head is more sensitive. The Halley record shows clear trends and seasonality in δ(O2/N2) and APO, the latter agreeing especially well with continuous measurements at the same location made by the University of East Anglia (UEA), while CO2 and δ(O2/N2) present slight disagreements, most likely caused by small leakages during sampling. From our 2002–2018 records, we find a good agreement with Global Carbon Budget 2021 (Friedlingstein et al. (2021) for the global ocean carbon sink: 2.1 ± 0.8 PgC yr−1, based on the Lutjewad record. The data presented in this work are available at https://doi.org/10.18160/qq7d-t060 (Nguyen et al., 2021).

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Natural Environment Research Council

National Centre for Atmospheric Science

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference64 articles.

1. Aoki, N., Ishidoya, S., Tohjima, Y., Morimoto, S., Keeling, R. F., Cox, A., Takebayashi, S., and Murayama, S.: Intercomparison of O2/ N2 ratio scales among AIST, NIES, TU, and SIO based on a round-robin exercise using gravimetric standard mixtures, Atmos. Meas. Tech., 14, 6181–6193, https://doi.org/10.5194/amt-14-6181-2021, 2021.

2. Barningham, T.: Detection and Attribution of Carbon Cycle Processes from Atmospheric O2 and CO2 Measurements at Halley Research Station, Antarctica and Weybourne Atmospheric Observatory, U.K., PhD Thesis, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom, 2018.

3. Battle, M., Fletcher, S. M., Bender, M. L., Keeling, R. F., Manning, A. C., Gruber, N., Tans, P. P., Hendricks, M. B., Ho, D. T., Simonds, C., Mika, R., and Paplawsky, B.: Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models, Global Biogeochem. Cy., 20, GB1010, https://doi.org/10.1029/2005gb002534, 2006.

4. Bender, M. L., Tans, P. P., Ellis, T., Orchardo, J., and Habfast, K.: A high precision isotope ratio mass spectrometry method for measuring the O2/N2 ratio of air, Geochim. Cosmochim. Ac., 58, 4751–4758, 1994.

5. Bender, M. L., Ellis, T., Tans, P. P., Francey, R., and Lowe, D.: Variability in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M678" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub><mo>/</mo><msub><mi mathvariant="normal">N</mi><mn mathvariant="normal">2</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="e5f10b90ca92863936ab39f0d9179212"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-991-2022-ie00106.svg" width="34pt" height="14pt" src="essd-14-991-2022-ie00106.png"/></svg:svg></span></span> ratio of southern hemisphere air, 1991–1994: Implications for the carbon cycle, Global Biogeochem. Cy., 10, 9–21, 1996.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3