A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches
-
Published:2022-03-16
Issue:3
Volume:14
Page:1193-1213
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Yan XingORCID, Zang Zhou, Li ZhanqingORCID, Luo Nana, Zuo Chen, Jiang Yize, Li Dan, Guo Yushan, Zhao Wenji, Shi Wenzhong, Cribb Maureen
Abstract
Abstract. The aerosol fine-mode fraction (FMF) is valuable for
discriminating natural aerosols from anthropogenic ones. However, most
current satellite-based FMF products are highly unreliable over land. Here,
we developed a new satellite-based global land daily FMF dataset (Phy-DL
FMF) by synergizing the advantages of physical and deep learning methods at
a 1∘ spatial resolution covering the period from 2001 to 2020. The
Phy-DL FMF dataset is comparable to Aerosol Robotic Network (AERONET)
measurements, based on the analysis of 361 089 data samples from 1170
AERONET sites around the world. Overall, Phy-DL FMF showed a
root-mean-square error (RMSE) of 0.136 and correlation coefficient of 0.68,
and the proportion of results that fell within the ±20 % expected
error (EE) envelopes was 79.15 %. Moreover, the out-of-site validation
from the Surface Radiation Budget (SURFRAD) observations revealed that the
RMSE of Phy-DL FMF is 0.144 (72.50 % of the results fell within the ±20 % EE). Phy-DL FMF showed superior performance over alternative deep
learning or physical approaches (such as the spectral deconvolution
algorithm presented in our previous studies), particularly for forests,
grasslands, croplands, and urban and barren land types. As a long-term
dataset, Phy-DL FMF is able to show an overall significant decreasing trend
(at a 95 % significance level) over global land areas. Based on the trend
analysis of Phy-DL FMF for different countries, the upward trend in the FMFs
was particularly strong over India and the western USA. Overall, this study
provides a new FMF dataset for global land areas that can help improve our
understanding of spatiotemporal fine-mode and coarse-mode aerosol changes. The
datasets can be downloaded from https://doi.org/10.5281/zenodo.5105617
(Yan, 2021).
Funder
National Natural Science Foundation of China Beijing Municipal Natural Science Foundation National Key Research and Development Program of China
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference83 articles.
1. Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1361, https://doi.org/10.1126/science.aal4108, 2017. 2. Anderson, T. L., Wu, Y. H., Chu, D. A., Schmid, B., Redemann, J., and
Dubovik, O.: Testing the MODIS satellite retrieval of aerosol fine-mode
fraction, J. Geophys. Res.-Atmos., 110, D18204, https://doi.org/10.1029/2005jd005978, 2005. 3. Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – Anational
surface radiation budget network for atmospheric research, B.
Am. Meteorol. Soc., 81, 2341–2357, 2000. 4. Bellouin, N., Boucher, O., Haywood, J., and Reddy, M. S.: Global estimate of
aerosol direct radiative forcing from satellite measurements, Nature, 438,
1138–1141, https://doi.org/10.1038/nature04348, 2005. 5. Chen, C., Dubovik, O., Fuertes, D., Litvinov, P., Lapyonok, T., Lopatin, A., Ducos, F., Derimian, Y., Herman, M., Tanré, D., Remer, L. A., Lyapustin, A., Sayer, A. M., Levy, R. C., Hsu, N. C., Descloitres, J., Li, L., Torres, B., Karol, Y., Herrera, M., Herreras, M., Aspetsberger, M., Wanzenboeck, M., Bindreiter, L., Marth, D., Hangler, A., and Federspiel, C.: Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring, Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, 2020.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|