High-resolution map of sugarcane cultivation in Brazil using a phenology-based method

Author:

Zheng Yi,dos Santos Luciano Ana Cláudia,Dong Jie,Yuan Wenping

Abstract

Abstract. Sugarcane is the most important source of sugar, and its cultivation area has undergone rapid expansion, replacing other crops, pastures, and forests. Brazil is the world's largest sugarcane producer and contributed to approximately 38.6 % of the world's total production in 2019. Sugarcane in Brazil can be harvested from April to December in the south-central area and from September to April in the northeast area. The flexible phenology and harvest conditions of sugarcane in Brazil make it difficult to identify the harvest area at state to country scales. In this study, we developed a phenology-based method to identify the harvest area of sugarcane in Brazil by incorporating the multiple phenology conditions into a time-weighted dynamic time warping method (TWDTW). Then, we produced annual 30 m spatial resolution sugarcane harvest maps (2016–2019) for 14 states in Brazil (over 98 % of the harvest area) based on the proposed method using Landsat-7, Landsat-8, and Sentinel-2 optical data. The proposed method performed well in identifying sugarcane harvest area with limited training sample data. Validations for the 2018 harvest year displayed high accuracy, with the user's, producer's, and overall accuracies of 94.35 %, 87.04 %, and 91.47 % in Brazil, respectively. In addition, the identified harvest area of sugarcane exhibited good correlations with the agricultural statistical data provided by the Brazilian Institute of Geography and Statistics (IBGE) at the municipality, microregion, and mesoregion levels. The 30 m Brazil sugarcane harvest maps can be obtained at https://doi.org/10.6084/m9.figshare.14213909 (Zheng et al., 2021).

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Abdel-Rahman, E. M. and Ahmed, F. B.: The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature, Int. J. Remote Sens., 29, 3753–3767, https://doi.org/10.1080/01431160701874603, 2008.

2. Adami, M., Theodor Rudorff, B. F., Freitas, R. M., Aguiar, D. A., Sugawara, L. M., and Mello, M. P.: Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil, Sustainability, 4, 574–585, https://doi.org/10.3390/su4040574, 2012.

3. Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ., 204, 509–523, https://doi.org/10.1016/j.rse.2017.10.005, 2018.

4. Bendini, H. D. N., Fonseca, L. M. G., Schwieder, M., Korting, T. S., Rufin, P., Sanches, I. D. A., Leitao, P. J., and Hostert, P.: Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series, Int. J. Appl. Earth Obs., 82, 101872, https://doi.org/10.1016/j.jag.2019.05.005, 2019. 

5. Bordonal, R. D. O., Lal, R., Aguiar, D. A., de Figueiredo, E. B., Perillo, L. I., Adami, M., Theodor Rudorff, B. F., and La Scala, N.: Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil, Renew. Sust. Energ. Rev., 52, 547–556, https://doi.org/10.1016/j.rser.2015.07.137, 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3