Hydrodynamic and hydrological processes within a variety of coral reef lagoons: field observations during six cyclonic seasons in New Caledonia

Author:

Bruyère OrianeORCID,Soulard Benoit,Lemonnier Hugues,Laugier ThierryORCID,Hubert Morgane,Petton SébastienORCID,Desclaux Térence,Van Wynsberge Simon,Le Tesson Eric,Lefèvre Jérôme,Dumas Franck,Kayara Jean-François,Bourassin EmmanuelORCID,Lalau Noémie,Antypas Florence,Le Gendre Romain

Abstract

Abstract. From 2014 to 2021 during the cyclone seasons, extensive monitoring of the hydrodynamics within a variety of lagoons of New Caledonia was conducted as a part of the PRESENCE project (PRESsures on coral Ecosystems of New CalEdonia). The PRESENCE project is aimed at building an efficient representation of the land–lagoon–ocean continuum at Grande Terre, New Caledonia's main island. Overall, coastal physical observations encompassed five different lagoons (four of which were never before monitored) and at least eight major atmospheric events ranging from tropical depressions to category 4 cyclones. The main objectives of this study were to characterize the processes controlling the hydrodynamics and hydrology of these lagoons (e.g., ocean–lagoon exchanges, circulation, level dynamics, temperature, and salinity variability), and to capture the magnitude of change during extreme events. An additional objective was to compile an adequate data set for future use in high-resolution hydrodynamic models. Autonomous oceanographic instruments were moored at strategic locations to collect time series of temperature, salinity, pressure, and Eulerian currents. Additionally, Lagrangian surface currents were observed through deploying drifter buoys, and cross-shore hydrological profile radials were carried out using CTDs (conductivity, temperature, depth). In total, five survey campaigns were conducted, beginning with the SPHYNX campaign which lasted 15 months (December 2014 to February 2016) in the Hienghène–Touho lagoon and ended with the 9 months NEMO campaign (September 2020 to April 2021) in Moindou lagoon. Between these were the 5 months NOUMEA campaign (December 2016 to April 2017) in Noumea lagoon, the 6 months ELADE campaign (February to August 2018) in the Poe lagoon, and the 5 months CADHYAK campaign (December 2019 to May 2020) in Koumac lagoon. In addition to characterizing these lagoons, the data set identifies important features and processes, such as the presence of internal waves on forereefs, wave-driven fluxes over reef barriers, and exchanges through passes. Signatures from strong events were also identified, including surges, thermal drops inside lagoons, and massive flash flood plume dispersion. Raw data sets were processed, controlled for quality, validated, and analyzed. Processed files are made publicly available in dedicated repositories on the SEANOE marine data platform in NetCDF format. Links (DOI) of individual data sets are provided herein.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3