High-resolution land use and land cover dataset for regional climate modelling: a plant functional type map for Europe 2015

Author:

Reinhart Vanessa,Hoffmann PeterORCID,Rechid Diana,Böhner JürgenORCID,Bechtel BenjaminORCID

Abstract

Abstract. The concept of plant functional types (PFTs) is shown to be beneficial in representing the complexity of plant characteristics in land use and climate change studies using regional climate models (RCMs). By representing land use and land cover (LULC) as functional traits, responses and effects of specific plant communities can be directly coupled to the lowest atmospheric layers. To meet the requirements of RCMs for realistic LULC distribution, we developed a PFT dataset for Europe (LANDMATE PFT Version 1.0; http://doi.org/10.26050/WDCC/LM_PFT_LandCov_EUR2015_v1.0, Reinhart et al., 2021b). The dataset is based on the high-resolution European Space Agency Climate Change Initiative (ESA-CCI) land cover dataset and is further improved through the additional use of climate information. Within the LANDMATE – LAND surface Modifications and its feedbacks on local and regional cliMATE – PFT dataset, satellite-based LULC information and climate data are combined to create the representation of the diverse plant communities and their functions in the respective regional ecosystems while keeping the dataset most flexible for application in RCMs. Each LULC class of ESA-CCI is translated into PFT or PFT fractions including climate information by using the Holdridge life zone concept. Through consideration of regional climate data, the resulting PFT map for Europe is regionally customized. A thorough evaluation of the LANDMATE PFT dataset is done using a comprehensive ground truth database over the European continent. The assessment shows that the dominant LULC types, cropland and woodland, are well represented within the dataset, while uncertainties are found for some less represented LULC types. The LANDMATE PFT dataset provides a realistic, high-resolution LULC distribution for implementation in RCMs and is used as a basis for the Land Use and Climate Across Scales (LUCAS) Land Use Change (LUC) dataset which is available for use as LULC change input for RCM experiment set-ups focused on investigating LULC change impact.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3