A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers

Author:

Liu Yongqin,Fang Pengcheng,Guo Bixi,Ji Mukan,Liu Pengfei,Mao Guannan,Xu Baiqing,Kang Shichang,Liu JunzhiORCID

Abstract

Abstract. Glaciers are recognized as a biome dominated by microorganisms and a reservoir of organic carbon and nutrients. Global warming remarkably increases glacier melting rate and runoff volume, which have significant impacts on the carbon and nitrogen cycles in downstream ecosystems. The Tibetan Plateau (TP), dubbed “the water tower of Asia”, owns the largest mountain glacial area at mid- and low-latitudes. However, limited data on the microbial abundance, organic carbon, and nitrogen in TP glaciers are available in the literature, which severely hinders our understanding of the regional carbon and nitrogen cycles. This work presents a new dataset on microbial abundance, dissolved organic carbon (DOC), and total nitrogen (TN) for TP glaciers. In this dataset, there are 5409 records from 12 glaciers for microbial abundance in ice cores and snow pits, and 2532 records from 38 glaciers for DOC and TN in the ice core, snow pit, surface ice, surface snow, and proglacial runoff. These glaciers are located across diverse geographic and climatic regions, where the multiyear average air temperature ranges from −13.4 to 2.9 ∘C and the multiyear average precipitation ranges from 76.9 to 927.8 mm. This makes the constructed dataset qualified for large-scale studies across the TP. To the best of our knowledge, this is the first dataset of microbial abundance and TN in TP glaciers and also the first dataset of DOC in ice cores of the TP. This new dataset provides important information for studies on carbon and nitrogen cycles in glacial ecosystems, and is especially valuable for the assessment of potential impacts of glacier retreat on downstream ecosystems under global warming. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center (https://doi.org/10.11888/Cryos.tpdc.271841; Liu, 2021).

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3