Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology

Author:

Urban J.,Pommier M.,Murtagh D. P.,Santee M. L.,Orsolini Y. J.

Abstract

Abstract. The Sub-Millimetre Radiometer (SMR) on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric acid (HNO3) originating from the Earth limb in a band centred at 544.6 GHz. Height-resolved measurements of the global distribution of nitric acid in the stratosphere were performed approximately on two observation days per week. An HNO3 climatology based on more than 7 years of observations from August 2001 to April 2009 covering the vertical range between typically ~19 and 45 km (~1.5–60 hPa or ~500–1800 K in terms of potential temperature) was created. The study highlights the spatial and seasonal variation of nitric acid in the stratosphere, characterised by a pronounced seasonal cycle at middle and high latitudes with maxima during late fall and minima during spring, strong denitrification in the lower stratosphere of the Antarctic polar vortex during winter (the irreversible removal of NOy by the sedimentation of cloud particles containing HNO3), as well as large quantities of HNO3 formed every winter at high-latitudes in the middle and upper stratosphere. A strong inter-annual variability is observed in particular at high latitudes. A comparison with a stratospheric HNO3 climatology, based on over 7 years of UARS/MLS (Upper Atmosphere Research Satellite/Microwave Limb Sounder) measurements from the 1990s, shows good consistency and agreement of the main morphological features in the potential temperature range ~465 to ~960 K, if the different characteristics of the data sets such as the better altitude resolution of Odin/SMR as well as the slightly different altitude ranges are considered. Odin/SMR reaches higher up and UARS/MLS lower down in the stratosphere. An overview from 1991 to 2009 of stratospheric nitric acid is provided (with a short gap between 1998 and 2001), if the global measurements of both experiments are taken together.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3