Measurement of OH reactivity by laser flash photolysis coupled with
laser-induced fluorescence spectroscopy
-
Published:2016-07-07
Issue:7
Volume:9
Page:2827-2844
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Stone DanielORCID, Whalley Lisa K., Ingham Trevor, Edwards Peter M.ORCID, Cryer Danny R.ORCID, Brumby Charlotte A., Seakins Paul W.ORCID, Heard Dwayne E.ORCID
Abstract
Abstract. OH reactivity (k′OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH reactivity measurements enable determination of the comprehensiveness of measurements used in models to predict air quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our understanding of OH production rates. In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in London, UK, and York, UK. The instrumental limit of detection for k′OH was determined to be 1.0 s−1 for the campaign in London and 0.4 s−1 for the campaign in York. The precision, determined by laboratory experiment, is typically < 1 s−1 for most ambient measurements of OH reactivity. Total uncertainty in ambient measurements of OH reactivity is ∼ 6 %. We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements to OH reactivity LFP-LIF instruments.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference54 articles.
1. Amedro, D., Miyazaki, K., Parker, A., Schoemaceker, C., and Fittschen, C.: Atmospheric and kinetic studies of OH and HO2 by the FAGE technique, J. Environ. Sci., 24, 78–86, 2012. 2. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. 3. Bloss, W. J., Gravestock, T. J., Heard, D. E., Ingham, T., Johnson, G. P., and Lee, J. D.: Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO and IO by laser-induced fluorescence, J. Environ. Monit., 5, 21–28, 2003. 4. Bohnenstengel, S. I., Belcher, S. E., Aiken, A. C., Allan, J. D., Allen, G., Bacak, A., Bannan, T. J., Barlow, J. F., Beddows, D. C. S., Bloss, W. J., Booth, A. M., Chemel, C., Coceal, O., Di Marco, C. F., Mavendra, D. K., Faloon, K. H., Fleming, Z., Furger, M., Gietl, J. K., Graves, R. R., Green, D. C., Grimmond, C. S. B., Halios, C., Hamilton, J. F., Harrison, R. M., Heal, M. R., Heard, D. E., Helfter, C., Herndon, S. C., Holmes, R. E., Hopkins, J. R., Jones, A. M., Kelly, F. J., Kotthaus, S., Langford, B., Lee, J. D., Leigh, R., Lewis, A. C., Lidster, R. T., Lopez-Hilfiker, F., McQuaid, J. B., Mohr, C., Monks, P. S., Nemitz, E., Ng, N. L., Percival, C. J., Prévôt, A. S. H., Ricketts, H. M. A., Sokhi, R., Stone, D., Thornton, J. A., Tremper, A. H., Valach, A. C., Visser, S., Whalley, L. K., Williams, L. R., Xu, L., Young, D. E., and Zotter, P.: Meteorology, air quality, and health in London: The ClearfLo project, Bull. Am. Meteor. Soc., 96, 779–804, https://doi.org/10.1175/BAMS-D-12-00245.1, 2015. 5. Bossolasco, A., Farago, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH3O2 and OH radicals, Chem. Phys. Lett., 593, 7–13, 2014.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|