Insights into ice stream dynamics through modelling their response to tidal forcing
-
Published:2014-09-25
Issue:5
Volume:8
Page:1763-1775
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Rosier S. H. R., Gudmundsson G. H.ORCID, Green J. A. M.ORCID
Abstract
Abstract. The tidal forcing of ice streams at their ocean boundary can serve as a natural experiment to gain an insight into their dynamics and constrain the basal sliding law. A nonlinear 3-D viscoelastic full Stokes model of coupled ice stream ice shelf flow is used to investigate the response of ice streams to ocean tides. In agreement with previous results based on flow-line modelling and with a fixed grounding line position, we find that a nonlinear basal sliding law can qualitatively reproduce long-period modulation of tidal forcing found in field observations. In addition, we show that the inclusion of lateral drag, or allowing the grounding line to migrate over the tidal cycle, does not affect these conclusions. Further analysis of modelled ice stream flow shows a varying stress-coupling length scale of boundary effects upstream of the grounding line. We derive a viscoelastic stress-coupling length scale from ice stream equations that depends on the forcing period and closely agrees with model output.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference52 articles.
1. Aðhalgeirsdóttir, G., Smith, A. M., Murray, T., King, M. A., Makinson, K., Nicholls, K. W., and Behar, A. E.: Tidal influence on Rutford Ice Stream, West Antarctica: observations of surface flow and basal processes from closely-spaced GPS and passive seismic stations, J. Glaciol., 54, 715–724, 2008. 2. Alley, R. B., Clark, P. U., Huybrechts, P., and Joughin, I.: Ice-sheet and sea-level changes, Science, 310, 456–460, 2005. 3. Anandakrishnan, S. and Alley, R.: Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., 102, 15813–15196, 1997. 4. Anandakrishnan, S., Voigt, D. E., and Alley, R. B.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30, 1361, https://doi.org/10.1029/2002GL016329, 2003. 5. Bindschadler, R. A., King, M. A., Alley, R. B., Anandakrishnan, S., and Padman, L.: Tidally controlled stick-slip discharge of a West Antarctic Ice Stream, Science, 301, 1087–1089, 2003a.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|