Modelling lava flows by Cellular Nonlinear Networks (CNN): preliminary results

Author:

Del Negro C.,Fortuna L.,Vicari A.

Abstract

Abstract. The forecasting of lava flow paths is a complex problem in which temperature, rheology and flux-rate all vary with space and time. The problem is more difficult to solve when lava runs down a real topography, considering that the relations between characteristic parameters of flow are typically nonlinear. An alternative approach to this problem that does not use standard differential equation methods is Cellular Nonlinear Networks (CNNs). The CNN paradigm is a natural and flexible framework for describing locally interconnected, simple, dynamic systems that have a lattice-like structure. They consist of arrays of essentially simple, nonlinearly coupled dynamic circuits containing linear and non-linear elements able to process large amounts of information in real time. Two different approaches have been implemented in simulating some lava flows. Firstly, a typical technique of the CNNs to analyze spatio-temporal phenomena (as Autowaves) in 2-D and in 3-D has been utilized. Secondly, the CNNs have been used as solvers of partial differential equations of the Navier-Stokes treatment of Newtonian flow.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Mount Batur lava flows and ejecta as new approaches in Indonesian short-term volcanic hazard assessment;2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS);2022-12-21

2. Volcanic Hazards;Hazards and Monitoring of Volcanic Activity 1;2022-08-10

3. Damage assessment for the 2018 lower East Rift Zone lava flows of Kīlauea volcano, Hawaiʻi;Bulletin of Volcanology;2022-06-06

4. How Nonlinear Science Leads to Continuous Innovation in an Academic and Productive High-Tech Community;Nonlinear Phenomena in Complex Systems;2022-03-31

5. Chemical, Textural and Thermal Analyses of Local Interactions Between Lava Flow and a Tree – Case Study From Pāhoa, Hawai’i;Frontiers in Earth Science;2020-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3