Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea

Author:

Bussmann IngeborgORCID,Achterberg Eric P.,Brix HolgerORCID,Brüggemann NicolasORCID,Flöser Götz,Schütze ClaudiaORCID,Fischer PhilippORCID

Abstract

Abstract. Quantification of the diffusive methane fluxes between the coastal ocean and atmosphere is important to constrain the atmospheric methane budget. The determination of the fluxes in coastal waters is characterized by a high level of uncertainty. To improve the accuracy of the estimation of coastal methane fluxes, high temporal and spatial sampling frequencies of dissolved methane in seawater are required, as well as the quantification of atmospheric methane concentrations, wind speed and wind direction above the ocean. In most cases, these atmospheric data are obtained from land-based atmospheric and meteorological monitoring stations in the vicinity of the coastal ocean methane observations. In this study, we measured wind speed, wind direction and atmospheric methane directly on board three research vessels in the southern North Sea and compared the local and remote atmospheric and meteorological measurements on the quality of the flux data. In addition, we assessed the source of the atmospheric methane measured in the study area in the German Bight using air mass back-trajectory assessments. The choice of the wind speed data source had a strong impact on the flux calculations. Fluxes based on wind data from nearby weather stations amounted to only 58 ± 34 % of values based on in situ data. Using in situ data, we calculated an average diffusive methane sea-to-air flux of 221 ± 351 µmol m−2 d−1 (n = 941) and 159 ± 444 µmol m−2 d−1 (n = 3028) for our study area in September 2019 and 2020, respectively. The area-weighted diffusive flux for the entire area of Helgoland Bay (3.78 × 109 m2) was 836 ± 97 and 600 ± 111 kmol d−1 for September 2019 and 2020, respectively. Using the median value of the diffusive fluxes for these extrapolations resulted in much lower values compared to area-weighted extrapolations or mean-based extrapolations. In general, at high wind speeds, the surface water turbulence is enhanced, and the diffusive flux increases. However, this enhanced methane input is quickly diluted within the air mass. Hence, a significant correlation between the methane flux and the atmospheric concentration was observed only at wind speeds < 5 m s−1. The atmospheric methane concentration was mainly influenced by the wind direction, i.e., the origin of the transported air mass. Air masses coming from industrial regions resulted in elevated atmospheric methane concentrations, while air masses coming from the North Sea transported reduced methane levels. With our detailed study on the spatial distribution of methane fluxes we were able to provide a detailed and more realistic estimation of coastal methane fluxes.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3