Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake

Author:

Nixdorf E.ORCID,Boehrer B.

Abstract

Abstract. Lake stratification controls the cycling of dissolved matter within the water body. This is of particular interest in the case of meromictic lakes, where permanent density stratification of the deep water limits vertical transport, and a chemically different (reducing) milieu can be established. As a consequence, the geochemical setting and the mixing regime of a lake can stabilize each other mutually. We attempt a quantitative approach to the contribution of chemical reactions sustaining the density stratification. As an example, we chose the prominent case of iron meromixis in Waldsee near Doebern, a small lake that originated from near-surface underground mining of lignite. From a data set covering 4 years of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed the changing of the chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we designed a lab experiment, in which we removed iron compounds and organic material from monimolimnetic waters by introducing air bubbles. Precipitates could be identified by visual inspection. Eventually, the remaining solutes in the aerated water layer looked similar to mixolimnetic Waldsee water. Due to its reduced concentration of solutes, this water became less dense and remained floating on nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron-rich deep groundwater and the aeration through the lake surface were fully sufficient for the formation of iron meromixis.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3