A global data set of the extent of irrigated land from 1900 to 2005

Author:

Siebert S.ORCID,Kummu M.ORCID,Porkka M.,Döll P.ORCID,Ramankutty N.,Scanlon B. R.

Abstract

Abstract. Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global historical irrigation data set (HID) provides estimates of the temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5 arcmin resolution. We collected sub-national irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining sub-national irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to sub-national irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land as shown on historical maps for the western United States (around year 1900) and on a global map (around year 1960). Mean aridity on irrigated land increased and mean natural river discharge on irrigated land decreased from 1900 to 1950 whereas aridity decreased and river discharge remained approximately constant from 1950 to 2005. The data set and its documentation are made available in an open-data repository at https://mygeohub.org/publications/8 (doi:10.13019/M20599).

Funder

Academy of Finland

U.S. Department of Agriculture

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference73 articles.

1. Achtnich, W.: Bewässerungslandbau, Eugen Ulmer, Stuttgart, Germany, 1980.

2. Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, https://doi.org/10.1029/2009wr008929, 2011.

3. Boserup, E.: The conditions of agricultural growth. The economics of agrarian change under population pressure, Aldine, Chicago, 1965.

4. Bowman, I. (Ed.): Irrigation map of the West, 1911, in: Forest Physiography, John Wiley and Sons, New York, 1911.

5. Bruinsma, J.: The resource outlook to 2050. By how much do land, water use and crop yields need to increase by 2050?, FAO, Rome, Italy, 33 pp., 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3