The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models

Author:

Demirel M. C.ORCID,Booij M. J.ORCID,Hoekstra A. Y.

Abstract

Abstract. This paper investigates the skill of 90-day low-flow forecasts using two conceptual hydrological models and one data-driven model based on Artificial Neural Networks (ANNs) for the Moselle River. The three models, i.e. HBV, GR4J and ANN-Ensemble (ANN-E), all use forecasted meteorological inputs (precipitation P and potential evapotranspiration PET), whereby we employ ensemble seasonal meteorological forecasts. We compared low-flow forecasts for five different cases of seasonal meteorological forcing: (1) ensemble P and PET forecasts; (2) ensemble P forecasts and observed climate mean PET; (3) observed climate mean P and ensemble PET forecasts; (4) observed climate mean P and PET and (5) zero P and ensemble PET forecasts as input for the models. The ensemble P and PET forecasts, each consisting of 40 members, reveal the forecast ranges due to the model inputs. The five cases are compared for a lead time of 90 days based on model output ranges, whereas the models are compared based on their skill of low-flow forecasts for varying lead times up to 90 days. Before forecasting, the hydrological models are calibrated and validated for a period of 30 and 20 years respectively. The smallest difference between calibration and validation performance is found for HBV, whereas the largest difference is found for ANN-E. From the results, it appears that all models are prone to over-predict runoff during low-flow periods using ensemble seasonal meteorological forcing. The largest range for 90-day low-flow forecasts is found for the GR4J model when using ensemble seasonal meteorological forecasts as input. GR4J, HBV and ANN-E under-predicted 90-day-ahead low flows in the very dry year 2003 without precipitation data. The results of the comparison of forecast skills with varying lead times show that GR4J is less skilful than ANN-E and HBV. Overall, the uncertainty from ensemble P forecasts has a larger effect on seasonal low-flow forecasts than the uncertainty from ensemble PET forecasts and initial model conditions.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3