Spatially distributed calibration of a hydrological model with variational optimization constrained by physiographic maps for flash flood forecasting in France

Author:

Jay-Allemand Maxime,Demargne Julie,Garambois Pierre-André,Javelle PierreORCID,Gejadze Igor,Colleoni François,Organde Didier,Arnaud Patrick,Fouchier Catherine

Abstract

Abstract. This contribution presents a regionalization approach to estimate spatially distributed hydrologic parameters based on: (i) the SMASH (Spatially distributed Modelling and ASsimilation for Hydrology) hydrological modeling and assimilation platform (Jay-Allemand, 2020; Jay-Allemand et al., 2020) underlying the French national flash flood forecasting system Vigicrues Flash (Javelle et al., 2019); (ii) the variational assimilation algorithm from (Jay-Allemand et al., 2020), adapted to high dimensional inverse problems; (iii) spatial constraints added to the optimization problem, based on masks derived from physiographic maps (e.g., land cover, terrain slope); (iv) multi-site global optimization, which targets multiple independent watersheds. This method gives a regional estimation of the spatially distributed parameters over the whole modeled area. This study uses a distributed rainfall-runoff model with 4 parameters to calibrate, with a spatial resolution of 1×1 km2 and a 15 min time step. Performances of the calibrated hydrological model and the parameters robustness are evaluated on two French study areas with 20 catchments in each, in spatio-temporal extrapolation based on cross-validation experiments over a 12-year period. Several spatial regularization strategies are tested to better constrain the high dimensional optimization problem. The model parameters are calibrated based on the Nash-Sutcliffe Efficiency (NSE) computed for multiple calibration basins in the study area. Results are discussed based on the Nash-Sutcliffe Efficiency and the Kling-Gupta Efficiency criteria obtained on calibration and validation catchments for two subperiods of 6 years. Further work aims to improve the global search of prior parameter sets and to better balance the adjoint sensitivity with respect to the spatial constraints resolution and catchment characteristics. This will ensure a better consistency of simulated fluxes variabilities and enhance the applicability of the regionalization method at higher spatial scales and over larger domains.

Publisher

Copernicus GmbH

Reference25 articles.

1. Arnaud, P., Colleoni, F., Demargne, J., Ettalbi, M., Folton, N., Fouchier, C., Garambois, P., Gejadze, I., Godet, J., Haruna, A., Huynh Ngo Nghi, T., Javelle, P., Jay-Allemand, M., Organde, D., Paluszkiewicz, M., Pujol, K., Renard, B., Vigoureux, S., and Villenave, L.: The SMASH platform: Spatially distributed Modelling and ASsimilation for Hydrology, https://smash.recover.inrae.fr/index.html (last access: 12 May 2023), 2023. a

2. Beck, H. E., Pan, M., Lin, P., Seibert, J., van Dijk, A. I. J. M., and Wood, E. F.: Global Fully Distributed Parameter Regionalization Based on Observed Streamflow From 4,229 Headwater Catchments, J. Geophys. Res.-Atmos., 125, e2019JD031485, https://doi.org/10.1029/2019JD031485, 2020. a

3. Champeaux, J.-L., Dupuy, P., Laurantin, O., Soulan, I., Tabary, P., and Soubeyroux, J.-M.: Les mesures de précipitations et l'estimation des lames d'eau à Météo-France: état de l'art et perspectives, LHB, 5, 28–34, https://doi.org/10.1051/lhb/2009052, 2009. a

4. De Lavenne, A., Andréassian, V., Thirel, G., Ramos, M.-H., and Perrin, C.: . A regularization approach to improve the sequential calibration of a semidistributed hydrological model, Water Resour. Res., 55, 8821–8839, https://doi.org/10.1029/2018WR024266, 2019. a

5. Edijatno: Mise au point d'un modèle élémentaire pluie-débit au pas de temps journalier, PhD thesis, Université Louis Pasteur, ENGEES, Cemagref Antony, France, Strasbourg, 242 pp., https://webgr.inrae.fr/wp-content/uploads/2012/07/1991-EDIJATNO-THESE.pdf (last access: 9 May 2023), 1991. a, b

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flash Flood Warning;Hydrometeorology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3