Land subsidence caused by groundwater exploitation in Quetta and surrounding region, Pakistan

Author:

Kakar Najeebullah,Kakar Din Muhammad,Barrech Sadia

Abstract

Abstract. Land subsidence is effecting several metropolis in the developing as well as developed countries around the world such as Nagoya (Japan), Shanghai (China), Venice (Italy) and San Joaquin valley (United States). This phenomenon is attributed to natural as well as anthropogenic activities that include extensive groundwater withdrawals. Quetta which is facing similar subsidence phenomenon is the largest city of Balochistan province in Pakistan. This valley is mostly dry and ground water is the major source for domestic and agricultural consumption. The unplanned use of ground water resources has led to the deterioration of water quality and quantity in the Quetta valley. Water shortages in the region was further aggravated by the drought during (1998–2004) that affected the area forcing people to migrate from rural to urban areas. Refugees from the war torn neighboring Afghanistan also contributed to rapid increase in population of Quetta valley that has increased from 0.26 million in 1975 to 3.0 million in 2016. The objective of this study was to measure the land subsidence in Quetta valley and identify the effects of groundwater withdrawals on land subsidence. To achieve this goal, data from five Global Positioning System (GPS) stations in Quetta were acquired and processed. Furthermore the groundwater decline data from 41 observation wells during 2010 to 2015 were calculated and compared with the land deformation. The results of the GPS readings revealed that the land of Quetta valley is subsiding from 30 mm yr−1 on the flanks to 120 mm yr−1 in the central part. 1.5–5.0 m yr−1 of groundwater level drop was recorded in the area where the rate of subsidence is highest. Whereas 9–10 cm of subsidence was recorded in the surrounding areas of Quetta where agriculture and settlements are high. The surrounding areas include Kuchlak, Mastung, Pishin, Gulistan and Hurumzai districts. These results were acquired using InSAR imagery collected from October 2014 to march 2019. So the extensive groundwater withdrawals in Quetta valley and surrounding areas is considered to be the driving force behind land subsidence.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3