Ground motion areas detection (GMA-D): an innovative approach to identify ground deformation areas using the SAR-based displacement time series

Author:

Bonì RobertaORCID,Meisina Claudia,Poggio Linda,Fontana Alessandro,Tessari Giulia,Riccardi Paolo,Floris Mario

Abstract

Abstract. In this work, an innovative methodology to generate the automatic ground motion areas mapping is presented. The methodology is based on the analysis of the Synthetic Aperture Radar (SAR)-based displacement time series. The procedure includes two modules developed using the ModelBuilder tool (ArcGis). These modules allow to identify the ground motion areas (GMA) using only one dataset and the persistent GMA (PGMA) considering the different monitored periods and datasets. These areas represent clusters of targets characterized by the same displacement time series trend. The procedure was tested using different sensors such as ERS-1/2, ENVISAT, COSMO-SkyMed and Sentinel-1 covering the periods, 1992–2000, 2003–2010, 2012–2016 and 2014–2017, respectively, over an area of about 500 km2 in the Venetian-Friulian coastal Plain (NE Italy). The resulting mapping allows to detect priority areas where to address further in situ investigations such as to verify the presence of localized buried landforms.

Funder

Università degli Studi di Pavia

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3