Understanding and predicting large-scale hydrological variability in a changing environment

Author:

Massei Nicolas,Kingston Daniel G.,Hannah David M.ORCID,Vidal Jean-PhilippeORCID,Dieppois Bastien,Fossa Manuel,Hartmann AndreasORCID,Lavers David A.ORCID,Laignel Benoit

Abstract

Abstract. In a context of climate, environmental, ecological and socio-economical changes, understanding and predicting the response of hydrological systems on regional to global spatial scales, and on infra-seasonal to multidecadal time-scales, are major topics that must be considered to tackle the challenge of water resource management sustainability. In this context, a number of strongly-linked key issues need to be addressed by the scientific community, including: (i) identifying climate drivers of hydrological variations, (ii) understanding the multi-frequency characteristics of hydroclimate variability, including evolution of extremes (meteorological/hydrological event scale to long-term natural/internal climate- or anthropogenic-driven variations and trends), (iii) assessing the influence of local- to regional-scale basin properties on hydrological system response to climate variability and change, (iv) identifying the evolving contribution of anthropogenic water use in observed hydrological variations. Based on pan-European collaborations, activities of the EURO-FRIEND “Large-scale variations in hydrological characteristics” group aim at generating new findings to improve our understanding of hydrological systems behavior sensu lato (i.e. surface and sub-surface) on large spatial and temporal scales (i.e continental – multidecadal). Through selected examples, this contribution emphasizes recent research developments in characterizing and modeling of climate-hydrology linkages at different temporal and spatial scales, as well as recent insights on climate-hydrology scaling characteristics (i.e. long-term persistence, dependance of processes, of hydrological behaviors, of large-scale climate/hydrology linkages on time-/spatial scales), long-term hydrometeorological reconstructions, and large-scale hydrological model refinement taking into account spatial heterogeneity of watershed physical characteristics.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3