Spatial characterization of drought through CHIRPS and a station-based dataset in the Eastern Mediterranean

Author:

Orieschnig ChristinaORCID,Cavus YoncaORCID

Abstract

Abstract. Drought is a natural hazard which occurs in all climatic zones and affects different sectors, such as irrigation, energy, water supply, and ecology. Monitoring and predicting drought are pressing challenges, as drought is becoming more common and severe owing to the impacts of climate change and increased climatic variability. However, in many areas of the globe, the temporal and spatial characterization of droughts and drought severities are hindered by a lack of reliable, locally-measured long-term data and unevenly distributed, erratic meteorological stations. In this situation, remote sensing datasets such as Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) can offer valuable insights into long-term developments and the spatial characteristics of droughts. Nonetheless, it is often uncertain to which extent data such as CHIRPS succeeds in representing local dynamics and how this varies between geographical regions and climate zones. In this analysis, we aim to evaluate spatial drought conditions over the Seyhan River basin in Turkey in the Eastern Mediterranean. Using the Standardized Precipitation Index (SPI) as a drought index, the applicability of CHIRPS as a long-term satellite precipitation product for drought monitoring is investigated. We compare two spatial representations of the SPI: one derived on a per-pixel basis from CHIRPS data since 1981, the other based on data from 19 meteorological stations scattered across the basin, which was spatialized using inverse distance weighted interpolation (IDW). Our results offer insights into the relative accuracy of CHIRPS data and avenues towards optimizing the quality of spatial drought characterization.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3