Magnetic field fluctuations across the Earth’s bow shock

Author:

Czaykowska A.,Bauer T. M.,Treumann R. A.,Baumjohann W.

Abstract

Abstract. We present a statistical analysis of 132 dayside (LT 0700-1700) bow shock crossings of the AMPTE/IRM spacecraft. We perform a superposed epoch analysis of low frequency, magnetic power spectra some minutes up-stream and downstream of the bow shock. The events are devided into categories depending on the angle θBn between bow shock normal and interplanetary magnetic field, and on plasma-β. In the foreshock upstream of the quasi-parallel bow shock, the power of the magnetic fluctuations is roughly 1 order of magnitude larger (δB ~ 4 nT for frequencies 0.01–0.04 Hz) than upstream of the quasi-perpendicular shock. There is no significant difference in the magnetic power spectra upstream and downstream of the quasi-parallel bow shock; only at the shock itself, is the magnetic power enhanced by a factor of 4. This enhancement may be due to either an amplification of convecting upstream waves or to wave generation at the shock interface. On the contrary, downstream of the quasi-perpendicular shock, the magnetic wave activity is considerably higher than upstream. Down-stream of the quasi-perpendicular low-β bow shock, we find a dominance of the left-hand polarized component at frequencies just below the ion-cyclotron frequency, with amplitudes of about 3 nT. These waves are identified as ion-cyclotron waves, which grow in a low-β regime due to the proton temperature anisotropy. We find a strong correlation of this anisotropy with the intensity of the left-hand polarized component. Downstream of some nearly perpendicular (θBn ≈ 90°) high-β crossings, mirror waves are identified. However, there are also cases where the conditions for mirror modes are met downstream of the nearly perpendicular shock, but no mirror waves are observed.Key words. Interplanetary physics (plasma waves and turbulence) – Magnetospheric physics (magnetosheath; plasma waves and instabilities)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3