Seasonal and magnetic activity variations of ionospheric electric fields above the southern mid-latitude station, Bundoora, Australia

Author:

Parkinson M. L.,Polglase R.,Fejer B. G.,Scherliess L.,Dyson P. L.,Ujmaia S. M.

Abstract

Abstract. We investigate the seasonal, local solar time, and geomagnetic activity variations of the average Doppler velocity measured by an HF digital ionosonde deployed at Bundoora, Australia (145.1° E, 37.7° S, geographic; 49° S magnetic). The Doppler velocities were heavily averaged to suppress the short-term effects (<3 hours) of atmospheric gravity waves, and thereby obtain the diurnal variations attributed to the tidally-driven ionospheric dynamo and electric fields generated by magnetic disturbances. The observed seasonal variations in Doppler velocity were probably controlled by variations in the lower thermospheric winds and ionospheric conductivity above Bundoora and in the magnetically conjugate location. The diurnal variations of the meridional (field-perpendicular) drifts and their perturbations exhibited a complex structure, and were generally smaller than the variations in the zonal drifts. The latter were basically strongly west-ward during the evening to early morning, and weakly east-ward during the late morning to just past noon. The zonal perturbations were strongly enhanced by increasing geomagnetic activity, and closely resembled the perturbation drifts measured by the incoherent scatter radar (ISR) at Millstone Hill (71.5° W, 42.6° N; 57° N). There was also some resemblance between the diurnal variations in the meridional drifts. Overall, the comparisons suggest that with sufficient averaging, Doppler velocities measured with digital ionosondes at mid-latitudes correspond to true ion motions driven by ionospheric electric fields. This is a useful result because apart from the ISRs located in the American-European sector, there are no ground-based instruments capable of measuring electric fields in the mid-latitude ionosphere.Key words. Ionosphere (electric fields and currents; ionosphere atmosphere interactions; mid-latitude ionosphere)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3