Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

Author:

Bosqued J. M.,Phan T. D.,Dandouras I.,Escoubet C. P.,Rème H.,Balogh A.,Dunlop M. W.,Alcaydé D.,Amata E.,Bavassano-Cattaneo M.-B.,Bruno R.,Carlson C.,DiLellis A. M.,Eliasson L.,Formisano V.,Kistler L. M.,Klecker B.,Korth A.,Kucharek H.,Lundin R.,McCarthy M.,McFadden J. P.,Möbius E.,Parks G. K.,Sauvaud J.-A.

Abstract

Abstract. Launched on an elliptical high inclination orbit (apogee: 19.6 RE) since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e) ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF) conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0), multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE) is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001) corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of relevant CIS plasma data shows temporal cusp structures displaying a reverse energy-latitude "saw tooth" dispersion, typical for a bursty reconnection between the IMF and the lobe field lines. The observation of D-shaped distributions indicates that the Cluster satellites were located just a few RE from the reconnection site.Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosheath) Space plasma physics (magnetic reconnection)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Polar Cusp Seen by Cluster;Journal of Geophysical Research: Space Physics;2021-09

2. 20 Years of Cluster Observations: The Magnetopause;Journal of Geophysical Research: Space Physics;2021-08

3. Classifying Magnetosheath Jets Using MMS: Statistical Properties;Journal of Geophysical Research: Space Physics;2020-11

4. A multi-fluid model of the magnetopause;Annales Geophysicae;2020-03-02

5. What is the nature of magnetosheath FTEs?;Journal of Geophysical Research: Space Physics;2015-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3