Electrodynamics in a very thin current sheet leading to magnetic reconnection

Author:

Singh N.,Deverapalli C.,Khazanov G.

Abstract

Abstract. We study the formation of a very thin current sheet (CS) and associated plasma electrodynamics using three-dimensional (3-D) particle-in-cell simulations with ion to electron mass ratio M/m=1836. The CS is driven by imposed anti-parallel magnetic fields. The noteworthy features of the temporal evolution of the CS are the following: (i) Steepening of the magnetic field profile Bx(z) in the central part of the CS, (ii) Generation of three-peak current distribution with the largest peak in the CS center as Bx(z) steepens, (iii) Generation of converging electric fields forming a potential well in the CS center in which ions are accelerated. (iv) Electron and ion heating in the central part of the CS by current-driven instabilities (CDI). (v) Re-broadening of the CS due to increased kinetic plasma pressure in the CS center. (vi) Generation of electron temperature anisotropy with temperature perpendicular to the magnetic field being larger than the parallel one. (vii) Current disruption by electron trapping in an explosively growing electrostatic instability (EGEI) and electron tearing instability (ETI). (viii)The onset of EGEI coincides with an increase in the electron temperature above the temperature of the initially hot ions as well as the appearance of new shear in the electron drift velocity. (ix) Bifurcation of the central CS by the current disruption. (x) Magnetic reconnection (MR) beginning near the null in Bx and spreading outward. (xi) Generation of highly energized electrons reaching relativistic speeds and having isotropic pitch-angle distribution in the region of reconnected magnetic fields. We compare some of these features of the current sheet with results from laboratory and space experiments.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference44 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3