Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)

Author:

Bach Lennart ThomasORCID,Ferderer Aaron JamesORCID,LaRoche Julie,Schulz Kai GeorgORCID

Abstract

Abstract. Ocean alkalinity enhancement (OAE) aims to transfer carbon dioxide (CO2) from the atmosphere to the ocean by increasing the capacity of seawater to store CO2. The potential effects of OAE-induced changes in seawater chemistry on marine biology must be assessed to understand if OAE, operated at a climate-relevant scale, would be environmentally sustainable. Here, we describe the design of the Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP) – a standardised OAE microcosm experiment with plankton communities to be conducted worldwide. OAEPIIP provides funding for participating laboratories to conduct OAE experiments in their local environments. This paper constitutes a detailed manual on the standardised methodology that shall be adopted by all OAEPIIP participants. The individual studies will provide new insights into how plankton communities respond to OAE. The synthesis of these standardised studies, without publication bias, will reveal common OAE-responses that occur across geographic and environmental gradients and are therefore particularly important to determine. The funding available to OAEPIIP and the resulting data will be shared to maximise their value and accessibility. The globally coordinated effort has potential to promote scientific consensus about the potential effects of OAE on diverse plankton communities. Such consensus, through inclusion of the global community, will provide a sounder base to facilitate political decision making as to whether OAE should be scaled up or not.

Publisher

Copernicus GmbH

Reference43 articles.

1. Bach, L.: How to calculate the “equilibrated treatment” for OAEPIIP experiments with R, TIB [video], https://doi.org/10.5446/66754, 2024a.

2. Bach, L.: How to calculate the “equilibrated treatment” for OAEPIIP experiments with MS Excel, TIB [video], https://doi.org/10.5446/66752, 2024b.

3. Bach, L. and Ferderer, A.: Attach heat belts to microcosms for OAEPIIP experiments, TIB [video], https://doi.org/10.5446/66753, 2024.

4. Bach, L., Ferderer, A., and Durand, A.: Filling microcosms for OAEPIIP experiments, TIB [video], https://doi.org/10.5446/66751, 2024.

5. Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., and Renforth, P.: CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems, Front. Clim., 1, 7, https://doi.org/10.3389/fclim.2019.00007, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3