Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean)
-
Published:2017-03-21
Issue:3
Volume:17
Page:449-466
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Monioudi Isavela N., Velegrakis Adonis F., Chatzipavlis Antonis E., Rigos AnastasiosORCID, Karambas Theophanis, Vousdoukas Michalis I.ORCID, Hasiotis Thomas, Koukourouvli Nikoletta, Peduzzi Pascal, Manoutsoglou Eva, Poulos Serafim E., Collins Michael B.
Abstract
Abstract. The present contribution constitutes the first comprehensive attempt to (a) record the spatial characteristics of the beaches of the Aegean archipelago (Greece), a critical resource for both the local and national economy, and (b) provide a rapid assessment of the impacts of the long-term and episodic sea level rise (SLR) under different scenarios. Spatial information and other attributes (e.g., presence of coastal protection works and backshore development) of the beaches of the 58 largest islands of the archipelago were obtained on the basis of remote-sensed images available on the web. Ranges of SLR-induced beach retreats under different morphological, sedimentological and hydrodynamic forcing, and SLR scenarios were estimated using suitable ensembles of cross-shore (1-D) morphodynamic models. These ranges, combined with empirically derived estimations of wave run-up induced flooding, were then compared with the recorded maximum beach widths to provide ranges of retreat/erosion and flooding at the archipelago scale. The spatial information shows that the Aegean pocket beaches may be particularly vulnerable to mean sea level rise (MSLR) and episodic SLRs due to (i) their narrow widths (about 59 % of the beaches have maximum widths < 20 m), (ii) their limited terrestrial sediment supply, (iii) the substantial coastal development and (iv) the limited existing coastal protection. Modeling results indeed project severe impacts under mean and episodic SLRs, which by 2100 could be devastating. For example, under MSLR of 0.5 m – representative concentration pathway (RCP) 4.5 of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate change (IPCC) – a storm-induced sea level rise of 0.6 m is projected to result in a complete erosion of between 31 and 88 % of all beaches (29–87 % of beaches are currently fronting coastal infrastructure and assets), at least temporarily. Our results suggest a very considerable risk which will require significant effort, financial resources and policies/regulation in order to protect/maintain the critical economic resource of the Aegean archipelago.
Funder
Joint Research Centre European Social Fund European Commission
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference88 articles.
1. Abbott, T.: Shifting shorelines and political winds – The complexities of implementing the simple idea of shoreline setbacks for ocean front developments in Maui, Hawaii, Ocean Coast. Manage., 73, 13–21, 2013. 2. Alexandrakis, G., Manasakis, C., and Kampanis, N. A.: Valuating the effects of beach erosion to tourism revenue. A management perspective, Ocean Coast. Manage., 111, 1–11, 2015. 3. Allenbach, K., Garonna, I., Herold, C., Monioudi, I., Giuliani, G., Lehmann, and Velegrakis, A. F.: Black Sea beach vulnerability to sea level rise, Environ. Sci. Policy, 46, 95–109, 2015. 4. Androulidakis, Y. S., Kourafalou, V. H., Krestenitis, Y. N., and Zervakis, V.: Variability of deep water mass characteristics in the North Aegean Sea: The role of lateral inputs and atmospheric conditions, Deep-Sea Res. I, 67, 55–72, 2012. 5. Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions, Dynam. Atmos. Oceans, 71, 56–82, 2015.
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|