Assessment of island beach erosion due to sea level rise: the case of the Aegean archipelago (Eastern Mediterranean)

Author:

Monioudi Isavela N.,Velegrakis Adonis F.,Chatzipavlis Antonis E.,Rigos AnastasiosORCID,Karambas Theophanis,Vousdoukas Michalis I.ORCID,Hasiotis Thomas,Koukourouvli Nikoletta,Peduzzi Pascal,Manoutsoglou Eva,Poulos Serafim E.,Collins Michael B.

Abstract

Abstract. The present contribution constitutes the first comprehensive attempt to (a) record the spatial characteristics of the beaches of the Aegean archipelago (Greece), a critical resource for both the local and national economy, and (b) provide a rapid assessment of the impacts of the long-term and episodic sea level rise (SLR) under different scenarios. Spatial information and other attributes (e.g., presence of coastal protection works and backshore development) of the beaches of the 58 largest islands of the archipelago were obtained on the basis of remote-sensed images available on the web. Ranges of SLR-induced beach retreats under different morphological, sedimentological and hydrodynamic forcing, and SLR scenarios were estimated using suitable ensembles of cross-shore (1-D) morphodynamic models. These ranges, combined with empirically derived estimations of wave run-up induced flooding, were then compared with the recorded maximum beach widths to provide ranges of retreat/erosion and flooding at the archipelago scale. The spatial information shows that the Aegean pocket beaches may be particularly vulnerable to mean sea level rise (MSLR) and episodic SLRs due to (i) their narrow widths (about 59 % of the beaches have maximum widths < 20 m), (ii) their limited terrestrial sediment supply, (iii) the substantial coastal development and (iv) the limited existing coastal protection. Modeling results indeed project severe impacts under mean and episodic SLRs, which by 2100 could be devastating. For example, under MSLR of 0.5 m – representative concentration pathway (RCP) 4.5 of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate change (IPCC) – a storm-induced sea level rise of 0.6 m is projected to result in a complete erosion of between 31 and 88 % of all beaches (29–87 % of beaches are currently fronting coastal infrastructure and assets), at least temporarily. Our results suggest a very considerable risk which will require significant effort, financial resources and policies/regulation in order to protect/maintain the critical economic resource of the Aegean archipelago.

Funder

Joint Research Centre

European Social Fund

European Commission

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3