Refining temperature measures in thermal/optical carbon analysis

Author:

Chow J. C.,Watson J. G.,Chen L.-W. A.,Paredes-Miranda G.,Chang M.-C. O.,Trimble D.,Fung K. K.,Zhang H.,Zhen Yu J.

Abstract

Abstract. Thermal/optical methods have been widely used for quantifying total carbon (TC), organic carbon (OC), and elemental carbon (EC) in ambient and source particulate samples. Thermally defined carbon fractions have been used for source identification. Temperature precision in thermal carbon analysis is critical to the allocation of carbon fractions. The sample temperature is determined by a thermocouple, which is usually located in the oven near the sample. Sample and thermocouple temperature may differ owing to different thermal properties between the sample filter punch and the thermocouple, or inhomogeneities in the heating zone. Quick-drying temperature-indicating liquids (Tempil Inc., South Plainfield, NJ) of different liquefying points are used as temperature calibration standards. These consist of chemicals that change their appearance at specific temperatures and can be optically monitored to determine the sample temperature. Temperature measures were evaluated for three different models of carbon analyzers. Sample temperatures were found to differ from sensor temperatures by 10 to 50°C. Temperature biases of 14 to 22°C during thermal analysis were found to change carbon fraction measurements. The temperature indicators allow calibration curves to be constructed that relate the sample temperature to the temperature measured by a thermocouple.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3