Technical note: Harmonizing met-ocean model data via standard web services within small research groups

Author:

Signell R. P.,Camossi E.ORCID

Abstract

Abstract. Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.

Publisher

Copernicus GmbH

Reference7 articles.

1. Bergamasco, A., Benetazzo, A., Carniel, S., Falcieri, F. M., Minuzzo, T., Signell, R. P., and Sclavo, M.: Knowledge discovery in large model datasets in the marine environment: the THREDDS Data Server example, Advances in Oceanography and Limnology, 3, 41–50, https://doi.org/10.1080/19475721.2012.669637, 2012.

2. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A., Cinquini, L., Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D., Nefedova, V., Pouchard, L., Shoshani, A., Sim, A., Strand, G., and Williams, D.: The Earth System Grid: supporting the next generation of climate modeling research, Proceedings of the IEEE, 93, 485–495, https://doi.org/10.1109/JPROC.2004.842745, 2005.

3. Blower, J. D., Gemmell, A. L., Griffiths, G. H., Haines, K., Santokhee, A., and Yang, X.: A Web Map Service implementation for the visualization of multidimensional gridded environmental data, Environ. Modell. Softw., 47, 218–224, https://doi.org/10.1016/j.envsoft.2013.04.002, 2013.

4. de La Beaujardière, J., Beegle-Krause, C., Bermudez, L., Hankin, S., Hazard, L., Howlett, E., Le, S., Proctor, R., Signell, R., Snowden, D., and Thomas, J.: Ocean and Coastal Data Management, Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society (Vol. 2), Venice, Italy, 21–25 September 2009, edited by: Hall, J., Harrison, D. E. and Stammer, D., ESA Publication WPP-306, https://doi.org/10.5270/OceanObs09.cwp.22, 2009.

5. Howlett, E., Snowden, D. P., Signell, R. P., Knee, K. R., and Wilson, D.: Data management update for the integrated ocean observing system (IOOS®), Oceans – St. John's 14–19 September 2014, 1–10, https://doi.org/10.1109/OCEANS.2014.7003284, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3