Author:
Xiao J.,Wang D.,Xie Q.,Shu Y.,Liu C.,Chen J.
Abstract
Abstract. The near-inertial variability of the meridional overturning circulation in the South China Sea (SCSMOC) has been analyzed based on a global 1/12° ocean reanalysis. The wavelet analysis and power spectrum of deep SCSMOC time series shows that there is a significant signal in the near-inertial band. The maximum amplitude of the near-inertial signal in the SCSMOC is nearly 4 Sv. The spatial structure of the signal features regularly alternating counterclockwise and clockwise overturning cells. It is also found that the near-inertial signal of SCSMOC mainly originates from the Luzon Strait and propagates equatorward with the speed of 1–3 m s−1. Further analyses suggest that the near-inertial signal in the SCSMOC is triggered by high-frequency wind variability near the Luzon Strait where geostrophic shear always exists due to Kuroshio intrusion.