"Last mile" challenges to in situ volcanic data transmission

Author:

Fonseca J. F. B. D.,Faria B. V. E.,Trindade J.,Cruz G.,Chambel A.ORCID,Silva F. M.,Pereira R. L.,Vazão T.

Abstract

Abstract. Scientists play a key role in volcanic risk management, but rely heavily on fast access to data acquired in the vicinity of an active volcano. Hazardous volcanoes are often located in remote areas were telecommunications infrastructure is fragile. Besides being exposed directly to the volcanic hazard, the infrastructure in such remote areas can also suffer from "last mile" limitations derived from lack of market demand for data transmission services. In this paper, we report on the findings of the FP7 MIAVITA project in the topic of volcanic data transmission. We draw on the contribution of partners from emergent or developing countries to identify the main bottlenecks and fragilities. We also present the results of an experiment conducted on Fogo Island, Cape Verde, to test the availability of VSAT services adequate for volcanic monitoring. We warn against the false sense of security resulting from increasingly ubiquitous connectivity, and point out the lack of reliability of many consumer-type services, particularly during emergencies when such services are likely to crash due to excess of demand from the public. Finally, we propose guidelines and recommend best practices for the design of volcanic monitoring networks in what concerns data transmission. In particular, we advise that the data transmission equipment close to the exposed area should be owned, operated and maintained by the volcanic monitoring institution. We exemplify with the set-up of the Fogo telemetric interface, which uses low-power licence-free radio modems to reach a robust point of entry into the public network at a suitable distance from the volcano.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3