Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues

Author:

Catani F.ORCID,Lagomarsino D.,Segoni S.,Tofani V.

Abstract

Abstract. Despite the large number of recent advances and developments in landslide susceptibility mapping (LSM) there is still a lack of studies focusing on specific aspects of LSM model sensitivity. For example, the influence of factors such as the survey scale of the landslide conditioning variables (LCVs), the resolution of the mapping unit (MUR) and the optimal number and ranking of LCVs have never been investigated analytically, especially on large data sets. In this paper we attempt this experimentation concentrating on the impact of model tuning choice on the final result, rather than on the comparison of methodologies. To this end, we adopt a simple implementation of the random forest (RF), a machine learning technique, to produce an ensemble of landslide susceptibility maps for a set of different model settings, input data types and scales. Random forest is a combination of Bayesian trees that relates a set of predictors to the actual landslide occurrence. Being it a nonparametric model, it is possible to incorporate a range of numerical or categorical data layers and there is no need to select unimodal training data as for example in linear discriminant analysis. Many widely acknowledged landslide predisposing factors are taken into account as mainly related to the lithology, the land use, the geomorphology, the structural and anthropogenic constraints. In addition, for each factor we also include in the predictors set a measure of the standard deviation (for numerical variables) or the variety (for categorical ones) over the map unit. As in other systems, the use of RF enables one to estimate the relative importance of the single input parameters and to select the optimal configuration of the classification model. The model is initially applied using the complete set of input variables, then an iterative process is implemented and progressively smaller subsets of the parameter space are considered. The impact of scale and accuracy of input variables, as well as the effect of the random component of the RF model on the susceptibility results, are also examined. The model is tested in the Arno River basin (central Italy). We find that the dimension of parameter space, the mapping unit (scale) and the training process strongly influence the classification accuracy and the prediction process. This, in turn, implies that a careful sensitivity analysis making use of traditional and new tools should always be performed before producing final susceptibility maps at all levels and scales.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3