Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice

Author:

Dawson Geoffrey J.ORCID,Landy Jack C.ORCID

Abstract

Abstract. The CryoSat-2 radar altimeter and ICESat-2 laser altimeter can provide complementary measurements of the freeboard and thickness of Arctic sea ice. However, both sensors face significant challenges for accurately measuring the ice freeboard when the sea ice is melting in summer months. Here, we used crossover points between CryoSat-2 and ICESat-2 to compare elevation retrievals over summer sea ice between 2018–2021. We focused on the electromagnetic (EM) bias documented in CryoSat-2 measurements, associated with surface melt ponds over summer sea ice which cause the radar altimeter to underestimate elevation. The laser altimeter of ICESat-2 is not susceptible to this bias but has other biases associated with melt ponds. So, we compared the elevation difference and reflectance statistics between the two satellites. We found that CryoSat-2 underestimated elevation compared to ICESat-2 by a median difference of 2.4 cm and by a median absolute deviation of 5.3 cm, while the differences between individual ICESat-2 beams and CryoSat-2 ranged between 1–3.5 cm. Spatial and temporal patterns of the bias were compared to surface roughness information derived from the ICESat-2 elevation data, the ICESat-2 photon rate (surface reflectivity), the CryoSat-2 backscatter, and the melt pond fraction derived from Sentinel-3 Ocean and Land Color Instrument (OLCI) data. We found good agreement between theoretical predictions of the CryoSat-2 EM melt pond bias and our new observations; however, at typical roughness <0.1 m the experimentally measured bias was larger (5–10 cm) compared to biases resulting from the theoretical simulations (0–5 cm). This intercomparison will be valuable for interpreting and improving the summer sea ice freeboard retrievals from both altimeters.

Funder

European Space Agency

Norges Forskningsråd

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3