Assessment of cloud-related fine-mode AOD enhancements based on AERONET SDA product

Author:

Arola AnttiORCID,Eck Thomas F.,Kokkola HarriORCID,Pitkänen Mikko R. A.ORCID,Romakkaniemi SamiORCID

Abstract

Abstract. AERONET (AErosol RObotic NETwork), which is a network of ground-based sun photometers, produces a data product called the aerosol spectral deconvolution algorithm (SDA) that utilizes spectral total aerosol optical depth (AOD) data to infer the component fine- and coarse-mode optical depths at 500 nm. Based on its assumptions, SDA identifies cloud optical depth as the coarse-mode AOD component and therefore effectively computes the fine-mode AOD also in mixed cloud–aerosol observations. Therefore, it can be argued that the more representative AOD for fine-mode fraction should be based on all direct sun measurements and not only on those cloud screened for clear-sky conditions, i.e., on those from level 1 (L1) instead of level 2 (L2) in AERONET. The objective of our study was to assess, including all the available AERONET sites, how the fine-mode AOD is enhanced in cloudy conditions, contrasting SDA L1 and L2 in our analysis. Assuming that the cloud screening correctly separates the cloudy and clear-sky conditions, then the increases in fine-mode AOD can be due to various cloud-related processes, mainly by the strong hygroscopic growth of particles in the vicinity of clouds and in-cloud processing leading to growth of accumulation mode particles. We estimated these cloud-related enhancements in fine-mode AOD seasonally and found, for instance, that in June–August season the average over all the AERONET sites was 0.011, when total fine-mode AOD from L2 data was 0.154; therefore, the relative enhancement was 7 %. The enhancements were largest, both absolutely and relatively, in East Asia; for example, in June–August season the absolute and relative differences in fine-mode AOD, between L1 and L2 measurements, were 0.022 and 10 %, respectively. Corresponding values in North America and Europe were about 0.01 and 6–7 %. In some highly polluted areas, the enhancement is greater than these regional averages, e.g., in Beijing region and in June–July–August (JJA) season the corresponding absolute values were about 0.1. It is difficult to separate the fine-mode AOD enhancements due to in-cloud processing and hygroscopic growth, but we attempted to get some understanding by conducting a similar analysis for SDA-based fine-mode Ångström exponent (AE) patterns. Moreover, we exploited a cloud parcel model, in order to understand in detail the relative role of different processes. We found that in marine conditions, were aerosol concentration are low and cloud scavenging is efficient, the AE changes in opposite direction than in the more polluted conditions, were hygroscopic growth of particles leads to a negative AE change.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference26 articles.

1. Chand, D., Wood, R., Ghan, S. J., Wang, M., Ovchinnikov, M., Rasch, P. J., Miller, S., Schichtel, B., and Moore, T.: Aerosol optical depth increase in partly cloudy conditions, J. Geophys. Res., 117, D17207, https://doi.org/10.1029/2012JD017894, 2012.

2. Chew, B. N., Campbell, J. R., Reid, J. S., Giles, D. M., Welton, E. J., Salinas, S. V., and Liew, S. C.: Tropical cirrus cloud contamination in sun photometer data, Atmos. Environ., 45, 6724–6731, https://doi.org/10.1016/j.atmosenv.2011.08.017, 2011.

3. Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements, J. Geophys. Res., 105, 9791–9806, 2000.

4. Eck, T. F., Holben, B., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., and Kinne, S., Wavelength dependence of the optical depth of biomass burning urban and desert dust aerosols, J. Geophys. Res., 104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999.

5. Eck, T. F., Holben, B. N., Reid, J. S., Arola, A., Ferrare, R. A., Hostetler, C. A., Crumeyrolle, S. N., Berkoff, T. A., Welton, E. J., Lolli, S., Lyapustin, A., Wang, Y., Schafer, J. S., Giles, D. M., Anderson, B. E., Thornhill, K. L., Minnis, P., Pickering, K. E., Loughner, C. P., Smirnov, A., and Sinyuk, A.: Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633–11656, https://doi.org/10.5194/acp-14-11633-2014, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3