Gas adsorption and desorption effects on cylinders and their importance for long-term gas records

Author:

Leuenberger M. C.ORCID,Schibig M. F.,Nyfeler P.

Abstract

Abstract. It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−1 compared to chemisorption ranging from 100 to 1000 kJ mol−1. Furthermore, chemisorption forms only monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws, however, it can be influenced by hysteresis effects. In the present experiment we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. We proved the pressure effect on physisorption for CO2, CH4 and H2O by decanting one steel and two aluminium cylinders completely. The CO2 results for both cylinders are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, adsorption on aluminium (< 0.05 and 0 ppm for CO2 and H2O) was about 10 times less than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO2 amounts adsorbed (5.8 × 1019 CO2 molecules) corresponds to about the five-fold monolayer adsorption indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH4 and for CO. However, the latter dependence requires further attention since it was only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO2 ranging from 0.0014 to 0.0184 ppm °C−1 for steel cylinders and −0.0002 to −0.0003 ppm °C−1 for aluminium cylinders. The reversed temperature dependence for aluminium cylinders point to significantly lower desorption energies than for steel cylinders and might at least partly be due to temperature and gas consumption induced pressure changes. Temperature coefficients for CH4, CO and H2O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high precision calibration purposes such as requested in trace gas applications.

Funder

Schweizerischer Nationalfonds zur F&#x00F6;rderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3