Specific rates of leucine incorporation by marine bacterioplantkon in the open Mediterranean Sea in summer using cell sorting
Author:
Talarmin A.,Van Wambeke F.,Catala P.,Courties C.,Lebaron P.
Abstract
Abstract. Cell-specific leucine incorporation rates were determined in early summer across the open stratified Mediterranean Sea along vertical profiles from 0 to 200 m. During the period of our study, the bulk leucine incorporation rate was on average 5.0 ± 4.0 (n=31) pmol leu l−1 h−1. After 3H-radiolabeled leucine incorporation and SyBR Green I staining, populations were sorted using flow cytometry. Heterotrophic prokaryotes (Hprok) were divided in several clusters according to the cytometric properties of side scatter and green fluorescence of the cells: the low nucleic acid content cells (LNA) and the high nucleic acid content cells (HNA), with high size and low size (HNA-hs and HNA-ls, respectively). LNA cells represented 45 to 63% of the Hprok abundance between surface and 200 m, and significantly contributed to the bulk activity, from 17 to 55% all along the transect. The HNA/LNA ratio of cell-specific activities was on average 2.1 ± 0.7 (n=31). Among Hprok populations from surface samples (0 down to the deep chlorophyll depth, DCM), HNA-hs was mostly responsible for the leucine incorporation activity. Its cell-specific activity was up to 13.3 and 6.9-fold higher than that of HNA-ls and LNA, respectively, and it varied within a wide range of values (0.9–54.3×10−21 mol leu cell−1 h−1). At the opposite, ratios between the specific activities of the 3 populations tended to get closer to each other, below the DCM, implying a potentially higher homogeneity in activity of Hprok in the vicinity of nutriclines. Prochlorococcus cells were easily sorted near the DCM and displayed cell-specific activities equally high, sometimes higher than the HNA-hs group (2.5–55×10−21 mol leu cell−1 h−1). We then showed that all the sorted populations were key-players in leucine incorporation into proteins. The mixotrophic feature of certain photosynthetic prokaryotes and the non-negligible activity of LNA cells all over Mediterranean were reinforced.
Publisher
Copernicus GmbH
Reference75 articles.
1. Andrade, L., Gonzalez, A. M., Rezende, C. E., Suzuki, M., Valentin, J. L., and Paranhos, R.: Distribution of HNA and LNA bacterial groups in the Southwest Atlantic Ocean, Braz. J. Microbiol., 38, 330–336, 2007. 2. Belzile, C., Brugel, S., Nozais, C., Gratton, Y., and Demers, S.: Variations of the abundance and nucleic acid content of heterotrophic bacteria in Beaufort Shelf waters during winter and spring, J. Marine Syst., 74, 946–956, 2008. 3. Bertilsson, S., Berglund, O., Pullin, M. J., and Chisholm, S. W.: Release of dissolved organic matter by Prochlorococcus, Vie et Milieu, 55, 225–231, 2005. 4. Bouman, H. A., Ulloa, O., Scanlan, D. J., Zwirglmaier, K., Li, W. K. W., Platt, T., Stuart, V., Barlow, R., Leth, O., Clementson, L., Lutz, V., Fukasawa, M., Watanabe, S., and Sathyendranath, S.: Oceanographic basis of the global surface distribution of Prochlorococcus ecotypes, Science, 312, 918, 2006. 5. Bouvier, T., del Giorgio, P. A., and Gasol, J. m.: A comparative study of the cytometric characteristics of High and Low nucleic-acid bacterioplankton cells from different aquatic ecosystems, Environ. Microbiol., 9, 2050–2066, 2007.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|