Diurnal, seasonal and solar cycle variation in total electron content and comparison with IRI-2016 model at Birnin Kebbi

Author:

Ogwala Aghogho,Somoye Emmanuel Olufemi,Ogunmodimu Olugbenga,Adeniji-Adele Rasaq Adewemimo,Onori Eugene Oghenakpobor,Oyedokun Oluwole

Abstract

Abstract. The ionosphere is the major error source for the signals of global positioning system (GPS) satellites. In the analysis of GPS measurements, ionospheric error is assumed to be somewhat of a nuisance. The error induced by the ionosphere is proportional to the number of electrons along the line of sight (LOS) from the satellite to receiver and can be determined in order to study the diurnal, seasonal, solar cycle and spatial variations in the ionosphere during quiet and disturbed conditions. In this study, we characterize the diurnal, seasonal and solar cycle variation in observed total electron content (OBS-TEC) and compare the results with the International Reference Ionosphere (IRI-2016) model. We obtained TEC from a dual-frequency GPS receiver located at Birnin Kebbi Federal Polytechnic (BKFP) in northern Nigeria (geographic location: 12.64∘ N, 4.22∘ E; 2.68∘ N dip) for the period 2011–2014. We observed differences between the diurnal variation in OBS-TEC and the IRI-2016 model for all hours of the day except during the post-midnight hours. Slight post-noon peaks in the daytime maximum and post-sunset decrease and enhancement are observed in the diurnal variation in OBS-TEC during the equinoxes. On a seasonal scale, we observed that OBS-TEC values were higher in the equinoxes than the solstices only in 2012. However, in 2011, the September equinox and December solstice recorded a higher magnitude, followed by the March equinox, and the magnitude was lowest in the June solstice. In 2013, the December solstice magnitude was highest, followed by the equinoxes, and it was lowest in the June solstice. In 2014, the March equinox and December solstice magnitudes were higher than the September equinox and June solstice magnitude. The June solstice consistently recorded the lowest values for all the years. OBS-TEC is found to increase from 2011 to 2014, thus revealing solar cycle dependence.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3