Climatology of intermediate descending layers (or 150 km echoes) over the equatorial and low-latitude regions of Brazil during the deep solar minimum of 2009

Author:

dos Santos Ângela MachadoORCID,Batista Inez StaciariniORCID,Abdu Mangalathayil Ali,Sobral José Humberto Andrade,de Souza Jonas Rodrigues,Brum Christiano Garnett Marques

Abstract

Abstract. In this work, we have performed a study for the first time on the climatology of the intermediate descending layers (ILs) over Brazilian equatorial and low-latitude regions during the extreme solar minimum period of 2009. The result of this study shows that the occurrence frequency of the ILs is very high, being > 60 % over São Luís (2∘ S, 44∘ W; inclination: −3.8∘) and > 90 % in Cachoeira Paulista (22.42∘ S, 45∘ W; inclination: −33.5∘). In most cases the ILs occur during the day at altitudes varying from 130 to 180 km and they may descend to lower altitudes (∼100 km) in a time interval of a few minutes to hours. The main driving force for the ILs at the low-latitude region, may be considered to be the diurnal tide (24 h) followed in smaller dominance by the semidiurnal (12 h), terdiurnal (8 h) and quarter-diurnal (6 h) components. In the magnetic equatorial sector, similar behavior was seen, with the exception of the semidiurnal tide, which in general does not appear to have influenced the IL's dynamics (except in summer). Additionally, the IL mean descent velocity over São Luís and Cachoeira Paulista shows a day-to-day variability that may be associated with a wave-like perturbation with a periodicity of some days. Some peculiarities in the IL dynamics were noted, such as the presence of the ILs during the night hours. Ascending and descending ILs appeared to have been formed from some connection with the ionospheric F layer. Quite often, these characteristics are observed in the presence of strong signatures of the gravity wave propagation as suggested by the F layer traces in the ionogram. The descending intermediate layer over Brazil appears to have been formed through a process of F1 layer base detachment. An interesting case study showed that an ascending ILs, initially detected at ∼130 km, reached the base of the F2 layer, due probably to the gravity wave propagation and/or the effect of a prompt penetration electric field.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3