Importance of reactive halogens in the tropical marine atmosphere: A regional modelling study using WRF-Chem

Author:

Badia AlbaORCID,Reeves Claire E.ORCID,Baker Alex R.ORCID,Saiz-Lopez AlfonsoORCID,Volkamer RainerORCID,Apel Eric C.,Hornbrook Rebecca S.ORCID,Carpenter Lucy J.ORCID,Andrews Stephen J.,von Glasow Roland

Abstract

Abstract. This study investigates the impact of halogens on atmospheric chemistry in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes of halogens to the atmosphere and the chemical processing. To do this the regional chemistry transport model WRF-Chem has been extended, for the first time, to include halogen chemistry (bromine, chlorine and iodine chemistry), including heterogeneous recycling reactions involving sea-salt aerosol and other particles, reactions of Br with volatile organic compounds (VOCs), along with oceanic emissions of halocarbons, VOCs and inorganic iodine. The study focuses on the tropical East Pacific using field observations from the TORERO campaign (January–February 2012) to evaluate the model performance. Including all the new processes, the model does a reasonable job reproducing the observed mixing ratios of BrO and IO, albeit with some discrepancies, some of which can be attributed to difficulties in the model's ability to reproduce the observed halocarbons. This is somewhat expected given the large uncertainties in the air-sea fluxes of the halocarbons in a region where there are few observations of seawater concentrations. We see a considerable impact on the Bry partitioning when heterogeneous chemistry is included, with a greater proportion of the Bry in active forms such as BrO, HOBr and dihalogens. Including debromination of sea-salt increases BrO slightly throughout the free troposphere, but in the tropical marine boundary layer, where the sea-salt particles are plentiful and relatively acidic, debromination leads to overestimation of the observed BrO. However, it should be noted that the modelled BrO was extremely sensitive to the inclusion of reactions between Br and the VOCs, which convert Br to HBr, a far less reactive form of Bry. Excluding these reactions leads to modelled BrO mixing ratios greater than observed. The reactions between Br and aldehydes were found to be particularly important, despite the model underestimating the amount of aldehydes observed in the atmosphere. There are only small changes to Iy partitioning and IO when the heterogeneous reactions, primarly on sea-salt, are included. Our model results show that the tropospheric Ox loss due to halogens is 31 %. This loss is mostly due to I (16 %) and Br (14 %) and it is in good agreement with other estimates from state-of-the-art atmospheric chemistry models.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3