Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system

Author:

Prikryl PaulORCID,Rušin Vojto,Prikryl Emil A.,Šťastný PavelORCID,Turňa Maroš,Zeleňáková MartinaORCID

Abstract

Abstract. Heavy rainfall events causing floods and flash floods are examined in the context of solar wind coupling to the magnetosphere–ionosphere–atmosphere system. The superposed epoch (SPE) analyses of solar wind variables have shown the tendency of severe weather to follow arrivals of high-speed streams from solar coronal holes. Precipitation data sets based on rain gauge and satellite sensor measurements are used to examine the relationship between the solar wind high-speed streams and daily precipitation rates over several midlatitude regions. The SPE analysis results show an increase in the occurrence of high precipitation rates following arrivals of high-speed streams, including recurrence with a solar rotation period of 27 d. The cross-correlation analysis applied to the SPE averages of the green (Fe XIV; 530.3 nm) corona intensity observed by ground-based coronagraphs, solar wind parameters, and daily precipitation rates show correlation peaks at lags spaced by solar rotation period. When the SPE analysis is limited to years around the solar minimum (2008–2009), which was dominated by recurrent coronal holes separated by ∼ 120∘ in heliographic longitude, significant cross-correlation peaks are found at lags spaced by 9 d. These results are further demonstrated by cases of heavy rainfall, floods and flash floods in Europe, Japan, and the USA, highlighting the role of solar wind coupling to the magnetosphere–ionosphere–atmosphere system in severe weather, mediated by aurorally excited atmospheric gravity waves.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3