Abstract
Abstract. Long-term variations in the relativistic (∼MeV) electrons in the Earth's radiation belt are explored to study seasonal features of the electrons. An L-shell dependence of the seasonal variations in the electrons is reported for the first time. A clear ∼6 month periodicity, representing one/two peaks per year, is identified for 1.5–6.0 MeV electron fluxes in the L shells between ∼3.0 and ∼5.0. The relativistic electron flux variation is strongest during solar cycle descending to minimum phases, with weaker/no variations during solar maximum. If two peaks per year occur, they are largely asymmetric in amplitude. The peaks essentially do not have an equinoctial
dependence. Sometimes the peaks are shifted to solstices, and sometimes only one annual peak is observed. No such seasonal features are prominent for L<3.0 and L>5.0. The results imply varying solar/interplanetary drivers of the radiation belt electrons at different L shells. This has a potential impact on the modeling of the space environment. Plausible solar drivers are discussed.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献