Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
-
Published:2021-01-28
Issue:1
Volume:39
Page:85-103
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Battarbee MarkusORCID, Brito ThiagoORCID, Alho Markku, Pfau-Kempf YannORCID, Grandin MaximeORCID, Ganse UrsORCID, Papadakis Konstantinos, Johlander Andreas, Turc LucileORCID, Dubart MaximeORCID, Palmroth MinnaORCID
Abstract
Abstract. Modern investigations of dynamical space plasma systems such as magnetically complicated topologies within the Earth's magnetosphere make great use of supercomputer models as well as spacecraft observations. Space plasma simulations can be used to investigate energy transfer, acceleration, and plasma flows on both global and local scales. Simulation of global magnetospheric dynamics requires spatial and temporal scales currently achievable through magnetohydrodynamics or hybrid-kinetic simulations, which approximate electron dynamics as a charge-neutralizing fluid. We introduce a novel method for Vlasov-simulating electrons in the context of a hybrid-kinetic framework in order to examine the energization processes of magnetospheric electrons. Our extension of the Vlasiator hybrid-Vlasov code utilizes the global simulation dynamics of the hybrid method whilst modelling snapshots of electron dynamics on global spatial scales and temporal scales suitable for electron physics. Our eVlasiator model is shown to be stable both for single-cell and small-scale domains, and the solver successfully models Langmuir waves and Bernstein modes. We simulate a small test-case section of the near-Earth magnetotail plasma sheet region, reproducing a number of electron distribution function features found in spacecraft measurements.
Funder
European Research Council Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference92 articles.
1. Akhavan-Tafti, M., Palmroth, M., Slavin, J. A., Battarbee, M., Ganse, U.,
Grandin, M., Le, G., Gershman, D. J., Eastwood, J. P., and Stawarz, J. E.:
Comparative Analysis of the Vlasiator Simulations and MMS Observations of
Multiple X-Line Reconnection and Flux Transfer Events, J. Geophys. Res.-Space, 125, e2019JA027410, https://doi.org/10.1029/2019JA027410, 2020. a 2. Artemyev, A. V., Baumjohann, W., Petrukovich, A. A., Nakamura, R., Dandouras,
I., and Fazakerley, A.: Proton/electron temperature ratio in the magnetotail,
Ann. Geophys., 29, 2253–2257, https://doi.org/10.5194/angeo-29-2253-2011, 2011. a 3. Artemyev, A. V., Petrukovich, A. A., Nakamura, R., and Zelenyi, L. M.: Profiles
of electron temperature and Bz along Earth's magnetotail, Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, 2013. a 4. Artemyev, A. V., Walsh, A. P., Petrukovich, A. A., Baumjohann, W., Nakamura,
R., and Fazakerley, A. N.: Electron pitch angle/energy distribution in the
magnetotail, J. Geophys. Res.-Space, 119, 7214–7227,
https://doi.org/10.1002/2014JA020350, 2014. a 5. Artemyev, A. V., Angelopoulos, V., Liu, J., and Runov, A.: Electron currents
supporting the near-Earth magnetotail during current sheet thinning,
Geophys. Res. Lett., 44, 5–11, https://doi.org/10.1002/2016GL072011, 2017. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|